Upper Bounds on the Size of Grain-Correcting Codes

In this paper, we revisit the combinatorial error model of Mazumdar et al. that models errors in high-density magnetic recording caused by lack of knowledge of grain boundaries in the recording medium. We present new upper bounds on the cardinality/rate of binary block codes that correct errors with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2014-08, Vol.60 (8), p.4699-4709
Hauptverfasser: Kashyap, Navin, Zemor, Gilles
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we revisit the combinatorial error model of Mazumdar et al. that models errors in high-density magnetic recording caused by lack of knowledge of grain boundaries in the recording medium. We present new upper bounds on the cardinality/rate of binary block codes that correct errors within this model. All our bounds, except for one, are obtained using combinatorial arguments based on hypergraph fractional coverings. The exception is a bound derived via an information-theoretic argument. Our bounds significantly improve upon existing bounds from the prior literature.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2014.2329008