PSO-EM: A Hyperspectral Unmixing Algorithm Based On Normal Compositional Model

A new hyperspectral unmixing algorithm is proposed based on the normal compositional model (NCM) to estimate the endmembers and abundance parameters jointly in this paper. The NCM considers the hyperspectral imaging as a stochastic process and interprets each pixel value as a random vector, which is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2014-12, Vol.52 (12), p.7782-7792
Hauptverfasser: Zhang, Bing, Zhuang, Lina, Gao, Lianru, Luo, Wenfei, Ran, Qiong, Du, Qian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new hyperspectral unmixing algorithm is proposed based on the normal compositional model (NCM) to estimate the endmembers and abundance parameters jointly in this paper. The NCM considers the hyperspectral imaging as a stochastic process and interprets each pixel value as a random vector, which is linearly mixed by the endmembers. More precisely, these endmembers are also treated as random variables as opposed to deterministic values in order to capture spectral variability that is not well described by the linear mixing model (LMM). However, the higher complexity of such an unmixing model leads to more difficulty in parameter estimation. A particle swarm optimization-expectation maximization (PSO-EM) algorithm, a "winner-take-all" version of the EM, is proposed to solve the parameter estimation problem, which employs a partial E step. The main contribution of the proposed PSO-EM is making optimum use of particle swarm optimization method (PSO) in the partial E step, which solves the difficulty of the integrals in the NCM model. The performance of the proposed methodology is evaluated through synthetic and real data experiments. Our obtained results demonstrate the superior performance of PSO-EM compared to other NCM-based as well as LMM-based methods.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2014.2319337