SLAM with SC-PHD Filters: An Underwater Vehicle Application
The random finite-set formulation for multiobject estimation provides a means of estimating the number of objects in cluttered environments with missed detections within a unified probabilistic framework. This methodology is now becoming the dominant mathematical framework within the sensor fusion c...
Gespeichert in:
Veröffentlicht in: | IEEE robotics & automation magazine 2014-06, Vol.21 (2), p.38-45 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The random finite-set formulation for multiobject estimation provides a means of estimating the number of objects in cluttered environments with missed detections within a unified probabilistic framework. This methodology is now becoming the dominant mathematical framework within the sensor fusion community for developing multiple-target tracking algorithms. These techniques are also gaining traction in the field of feature-based simultaneous localization and mapping (SLAM) for mobile robotics. Here, we present one such instance of this approach with an underwater vehicle using a hierarchical multiobject estimation method for estimating both landmarks and vehicle position. |
---|---|
ISSN: | 1070-9932 1558-223X |
DOI: | 10.1109/MRA.2014.2310132 |