SLAM with SC-PHD Filters: An Underwater Vehicle Application

The random finite-set formulation for multiobject estimation provides a means of estimating the number of objects in cluttered environments with missed detections within a unified probabilistic framework. This methodology is now becoming the dominant mathematical framework within the sensor fusion c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics & automation magazine 2014-06, Vol.21 (2), p.38-45
Hauptverfasser: Chee Sing Lee, Nagappa, Sharad, Palomeras, Narcis, Clark, Daniel E., Salvi, Joaquim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The random finite-set formulation for multiobject estimation provides a means of estimating the number of objects in cluttered environments with missed detections within a unified probabilistic framework. This methodology is now becoming the dominant mathematical framework within the sensor fusion community for developing multiple-target tracking algorithms. These techniques are also gaining traction in the field of feature-based simultaneous localization and mapping (SLAM) for mobile robotics. Here, we present one such instance of this approach with an underwater vehicle using a hierarchical multiobject estimation method for estimating both landmarks and vehicle position.
ISSN:1070-9932
1558-223X
DOI:10.1109/MRA.2014.2310132