0.6-2.7-Gb/s Referenceless Parallel CDR With a Stochastic Dispersion-Tolerant Frequency Acquisition Technique
A 0.6-2.7-Gb/s phase-rotator-based four-channel digital clock and data recovery (CDR) IC featuring a low-power dispersion-tolerant referenceless frequency acquisition technique is presented. A quasi-periodic reference clock signal extracted directly from a dispersed input signal is distributed to di...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on very large scale integration (VLSI) systems 2014-06, Vol.22 (6), p.1219-1225 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A 0.6-2.7-Gb/s phase-rotator-based four-channel digital clock and data recovery (CDR) IC featuring a low-power dispersion-tolerant referenceless frequency acquisition technique is presented. A quasi-periodic reference clock signal extracted directly from a dispersed input signal is distributed to digitally controlled phase rotators in the CDR ICs for phase acquisition. A multiphase frequency acquisition scheme is employed for the reduction of the clock jitter. The measurement results show that the proposed design offers a lower frequency offset and clock noise floor under channel dispersion, as compared with conventional designs. The proposed four-channel digital CDR IC is fabricated in a 90-nm CMOS process. The figure of merit for a single channel is 8 mW/Gb/s such as a feedforward equalizer, a decision-feedback equalizer, and a referenceless CDR. |
---|---|
ISSN: | 1063-8210 1557-9999 |
DOI: | 10.1109/TVLSI.2013.2268862 |