Adaptive PI Control of STATCOM for Voltage Regulation

STATCOM can provide fast and efficient reactive power support to maintain power system voltage stability. In the literature, various STATCOM control methods have been discussed including many applications of proportional-integral (PI) controllers. However, these previous works obtain the PI gains vi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power delivery 2014-06, Vol.29 (3), p.1002-1011
Hauptverfasser: Xu, Yao, Li, Fangxing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:STATCOM can provide fast and efficient reactive power support to maintain power system voltage stability. In the literature, various STATCOM control methods have been discussed including many applications of proportional-integral (PI) controllers. However, these previous works obtain the PI gains via a trial-and-error approach or extensive studies with a tradeoff of performance and applicability. Hence, control parameters for the optimal performance at a given operating point may not be effective at a different operating point. This paper proposes a new control model based on adaptive PI control, which can self-adjust the control gains during a disturbance such that the performance always matches a desired response, regardless of the change of operating condition. Since the adjustment is autonomous, this gives the plug-and-play capability for STATCOM operation. In the simulation test, the adaptive PI control shows consistent excellence under various operating conditions, such as different initial control gains, different load levels, change of transmission network, consecutive disturbances, and a severe disturbance. In contrast, the conventional STATCOM control with tuned, fixed PI gains usually perform fine in the original system, but may not perform as efficient as the proposed control method when there is a change of system conditions.
ISSN:0885-8977
1937-4208
DOI:10.1109/TPWRD.2013.2291576