Allometric Equations for Estimating Carbon Stocks in Natural Forest in New Zealand
Species-specific and mixed-species volume and above ground biomass allometric equations were developed for 15 indigenous tree species and four tree fern species in New Zealand. A mixed-species tree equation based on breast height diameter (DBH) and tree height (H) provided acceptable estimates of st...
Gespeichert in:
Veröffentlicht in: | Forests 2012-09, Vol.3 (3), p.818-839 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Species-specific and mixed-species volume and above ground biomass allometric equations were developed for 15 indigenous tree species and four tree fern species in New Zealand. A mixed-species tree equation based on breast height diameter (DBH) and tree height (H) provided acceptable estimates of stem plus branch (>10 cm in diameter over bark) volume, which was multiplied by live tree density to estimate dry matter. For dead standing spars, DBH, estimated original height, actual spar height and compatible volume/taper functions provided estimates of dead stem volume, which was multiplied by live tree density and a density modifier based on log decay class from field assessments to estimate dry matter. Live tree density was estimated using ratio estimators. Ratio estimators were based on biomass sample trees, and utilized density data from outerwood basic density surveys which were available for 35 tree species sampled throughout New Zealand. Foliage and branch ( < 10 cm in diameter over bark) dry matter were estimated directly from tree DBH. Tree fern above ground dry matter was estimated using allometric equations based on DBH and H. Due to insufficient data, below ground carbon for trees was estimated using the default IPCC root/shoot ratio of 25%, but for tree ferns it was estimated using measured root/shoot ratios which averaged 20%. |
---|---|
ISSN: | 1999-4907 1999-4907 |
DOI: | 10.3390/f3030818 |