Controlled Release of Damascone from Poly(styrene-co-maleic anhydride)-based Bioconjugates in Functional Perfumery
Poly(styrene-co-maleic anhydride)s were modified with poly(propylene oxide (PO)-co-ethylene oxide (EO)) side chains (Jeffamine®) with different EO/PO molar ratios, varying between 0.11 and 3.60. These copolymers were then further functionalized with a β-mercapto ketone of δ-damascone. The obtained p...
Gespeichert in:
Veröffentlicht in: | Polymers 2013-03, Vol.5 (1), p.234-253 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Poly(styrene-co-maleic anhydride)s were modified with poly(propylene oxide (PO)-co-ethylene oxide (EO)) side chains (Jeffamine®) with different EO/PO molar ratios, varying between 0.11 and 3.60. These copolymers were then further functionalized with a β-mercapto ketone of δ-damascone. The obtained poly(maleic acid monoamide)-based β-mercapto ketones were then studied as delivery systems for the controlled release of δ-damascone by retro 1,4-addition. The release of δ-damascone, a volatile, bioactive molecule of the family of rose ketones, was studied by dynamic headspace analysis above a cotton surface after deposition of a cationic surfactant containing fabric softening formulation, as a function of the ethylene oxide (EO)/propylene oxide (PO) molar ratio of the grafted copolymer side chains. The polarity of the EO/PO side chain influenced the release efficiency of the damascone in a typical fabric softening application. PO-rich copolymers and the corresponding poly(styrene-co-maleic anhydride) without Jeffamine® side chains were found to be less efficient for the desired fragrance release than the corresponding bioconjugate with a EO/PO ratio of 3.60 in the side chain. This copolymer conjugate seemed to represent a suitable balance between hydrophilicity and hydrophobicity to favor the release of the δ-damascone and to improve the deposition of the conjugate from an aqueous environment onto a cotton surface. |
---|---|
ISSN: | 2073-4360 2073-4360 |
DOI: | 10.3390/polym5010234 |