A PROOF OF THE FINITE FIELD ANALOGUE OF JACQUET'S CONJECTURE
In this paper, the proof of the finite-field-analogue of Jacquet's conjecture on local converse theorem for cuspidal representations of general linear groups is given. More precisely, the set of twisted gamma factors of π, $\left\{\mathrm{\gamma }\right(\mathrm{\pi }\times \mathrm{\tau },\mathr...
Gespeichert in:
Veröffentlicht in: | American journal of mathematics 2014-06, Vol.136 (3), p.653-674 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, the proof of the finite-field-analogue of Jacquet's conjecture on local converse theorem for cuspidal representations of general linear groups is given. More precisely, the set of twisted gamma factors of π, $\left\{\mathrm{\gamma }\right(\mathrm{\pi }\times \mathrm{\tau },\mathrm{\psi }\left)\right|\mathrm{\tau }\in {\mathrm{G}}_{\mathrm{t}},1\le \mathrm{t}\le \left[\frac{\mathrm{n}}{2}\right]\}$, together with a central character ωπ, determine uniquely (up to isomorphism) the irreducible cuspidal representation π of GLn(Fq), where Gt denotes the set of irreducible generic representations of GLt(Fq), and Fq denotes a finite field of q elements. |
---|---|
ISSN: | 0002-9327 1080-6377 1080-6377 |
DOI: | 10.1353/ajm.2014.0020 |