Strongly asymmetric discrete Painlevé equations: The additive case

We examine a class of discrete Painlevé equations which present a strong asymmetry. These equations can be written as a system of two equations, the right-hand-sides of which do not have the same functional form. We limit here our investigation to two canonical families of the Quispel-Roberts-Thomps...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2014-05, Vol.55 (5), p.1
Hauptverfasser: Grammaticos, B., Ramani, A., Tamizhmani, K. M., Tamizhmani, T., Satsuma, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We examine a class of discrete Painlevé equations which present a strong asymmetry. These equations can be written as a system of two equations, the right-hand-sides of which do not have the same functional form. We limit here our investigation to two canonical families of the Quispel-Roberts-Thompson (QRT) classification both of which lead to difference equations. Several new integrable discrete systems are identified.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.4874111