A divided-difference characterization of polynomials over a general field

(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) It is proved that, for an arbitrary field K not of characteristic 2 and arbitrary ..., if functions f : K[arrow right]K and h : K[arrow right]K satisfy f [x^sub 1^, . . . , x^sub n^] = h (x^sub 1^ + . . . + x^sub n^) wheneve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aequationes mathematicae 1998-02, Vol.55 (1), p.73-78
Hauptverfasser: Davies, R. O., Rousseau, G.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 78
container_issue 1
container_start_page 73
container_title Aequationes mathematicae
container_volume 55
creator Davies, R. O.
Rousseau, G.
description (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) It is proved that, for an arbitrary field K not of characteristic 2 and arbitrary ..., if functions f : K[arrow right]K and h : K[arrow right]K satisfy f [x^sub 1^, . . . , x^sub n^] = h (x^sub 1^ + . . . + x^sub n^) whenever x^sub 1^, . . . , x^sub n^ are distinct elements of K, then f is equal to a polynomial of degree at most n over K. (Here f [x^sub 1^, . . . , x^sub n^] denotes the divided difference of f at the distinct points x^sub 1^, . . . , x^sub n^.) The case of a field of characteristic 2 is also considered. [PUBLICATION ABSTRACT]
doi_str_mv 10.1007/PL00000046
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1530420385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3319826961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c174t-1fb20d396438cceb5298085b93b86b23ac5de0015b0f73bd216158238222bd93</originalsourceid><addsrcrecordid>eNpFUE1LAzEQDaLgWr34CwLehNV8bHazx1K0Fhb00HvIx0RTtpua3Rbqrzdawbk8ZuYx781D6JaSB0pI8_jWkd-q6jNU0IqRUraEn6Miz2jZElFdoqtx3OSONQ0v0GqOXTgEB650wXtIMFjA9kMnbSdI4UtPIQ44eryL_XGI26D7EccDJKzxOwyQdI99gN5dowufd3DzhzO0fn5aL17K7nW5Wsy70tKmmkrqDSOOt3XFpbVgBGslkcK03MjaMK6tcJDtCUN8w41jtKZCMi4ZY8a1fIbuTmd3KX7uYZzUJu7TkBUVFZzkl7kUmXV_YtkUxzGBV7sUtjodFSXqJyn1nxT_BgU6WYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1530420385</pqid></control><display><type>article</type><title>A divided-difference characterization of polynomials over a general field</title><source>SpringerLink Journals - AutoHoldings</source><creator>Davies, R. O. ; Rousseau, G.</creator><creatorcontrib>Davies, R. O. ; Rousseau, G.</creatorcontrib><description>(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) It is proved that, for an arbitrary field K not of characteristic 2 and arbitrary ..., if functions f : K[arrow right]K and h : K[arrow right]K satisfy f [x^sub 1^, . . . , x^sub n^] = h (x^sub 1^ + . . . + x^sub n^) whenever x^sub 1^, . . . , x^sub n^ are distinct elements of K, then f is equal to a polynomial of degree at most n over K. (Here f [x^sub 1^, . . . , x^sub n^] denotes the divided difference of f at the distinct points x^sub 1^, . . . , x^sub n^.) The case of a field of characteristic 2 is also considered. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0001-9054</identifier><identifier>EISSN: 1420-8903</identifier><identifier>DOI: 10.1007/PL00000046</identifier><identifier>CODEN: AEMABN</identifier><language>eng</language><publisher>Basel: Springer Nature B.V</publisher><ispartof>Aequationes mathematicae, 1998-02, Vol.55 (1), p.73-78</ispartof><rights>Birkhäuser Verlag, Basel, 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c174t-1fb20d396438cceb5298085b93b86b23ac5de0015b0f73bd216158238222bd93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Davies, R. O.</creatorcontrib><creatorcontrib>Rousseau, G.</creatorcontrib><title>A divided-difference characterization of polynomials over a general field</title><title>Aequationes mathematicae</title><description>(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) It is proved that, for an arbitrary field K not of characteristic 2 and arbitrary ..., if functions f : K[arrow right]K and h : K[arrow right]K satisfy f [x^sub 1^, . . . , x^sub n^] = h (x^sub 1^ + . . . + x^sub n^) whenever x^sub 1^, . . . , x^sub n^ are distinct elements of K, then f is equal to a polynomial of degree at most n over K. (Here f [x^sub 1^, . . . , x^sub n^] denotes the divided difference of f at the distinct points x^sub 1^, . . . , x^sub n^.) The case of a field of characteristic 2 is also considered. [PUBLICATION ABSTRACT]</description><issn>0001-9054</issn><issn>1420-8903</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNpFUE1LAzEQDaLgWr34CwLehNV8bHazx1K0Fhb00HvIx0RTtpua3Rbqrzdawbk8ZuYx781D6JaSB0pI8_jWkd-q6jNU0IqRUraEn6Miz2jZElFdoqtx3OSONQ0v0GqOXTgEB650wXtIMFjA9kMnbSdI4UtPIQ44eryL_XGI26D7EccDJKzxOwyQdI99gN5dowufd3DzhzO0fn5aL17K7nW5Wsy70tKmmkrqDSOOt3XFpbVgBGslkcK03MjaMK6tcJDtCUN8w41jtKZCMi4ZY8a1fIbuTmd3KX7uYZzUJu7TkBUVFZzkl7kUmXV_YtkUxzGBV7sUtjodFSXqJyn1nxT_BgU6WYQ</recordid><startdate>19980201</startdate><enddate>19980201</enddate><creator>Davies, R. O.</creator><creator>Rousseau, G.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19980201</creationdate><title>A divided-difference characterization of polynomials over a general field</title><author>Davies, R. O. ; Rousseau, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c174t-1fb20d396438cceb5298085b93b86b23ac5de0015b0f73bd216158238222bd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davies, R. O.</creatorcontrib><creatorcontrib>Rousseau, G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Aequationes mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davies, R. O.</au><au>Rousseau, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A divided-difference characterization of polynomials over a general field</atitle><jtitle>Aequationes mathematicae</jtitle><date>1998-02-01</date><risdate>1998</risdate><volume>55</volume><issue>1</issue><spage>73</spage><epage>78</epage><pages>73-78</pages><issn>0001-9054</issn><eissn>1420-8903</eissn><coden>AEMABN</coden><abstract>(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) It is proved that, for an arbitrary field K not of characteristic 2 and arbitrary ..., if functions f : K[arrow right]K and h : K[arrow right]K satisfy f [x^sub 1^, . . . , x^sub n^] = h (x^sub 1^ + . . . + x^sub n^) whenever x^sub 1^, . . . , x^sub n^ are distinct elements of K, then f is equal to a polynomial of degree at most n over K. (Here f [x^sub 1^, . . . , x^sub n^] denotes the divided difference of f at the distinct points x^sub 1^, . . . , x^sub n^.) The case of a field of characteristic 2 is also considered. [PUBLICATION ABSTRACT]</abstract><cop>Basel</cop><pub>Springer Nature B.V</pub><doi>10.1007/PL00000046</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-9054
ispartof Aequationes mathematicae, 1998-02, Vol.55 (1), p.73-78
issn 0001-9054
1420-8903
language eng
recordid cdi_proquest_journals_1530420385
source SpringerLink Journals - AutoHoldings
title A divided-difference characterization of polynomials over a general field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A56%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20divided-difference%20characterization%20of%20polynomials%20over%20a%20general%20field&rft.jtitle=Aequationes%20mathematicae&rft.au=Davies,%20R.%20O.&rft.date=1998-02-01&rft.volume=55&rft.issue=1&rft.spage=73&rft.epage=78&rft.pages=73-78&rft.issn=0001-9054&rft.eissn=1420-8903&rft.coden=AEMABN&rft_id=info:doi/10.1007/PL00000046&rft_dat=%3Cproquest_cross%3E3319826961%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1530420385&rft_id=info:pmid/&rfr_iscdi=true