A divided-difference characterization of polynomials over a general field
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) It is proved that, for an arbitrary field K not of characteristic 2 and arbitrary ..., if functions f : K[arrow right]K and h : K[arrow right]K satisfy f [x^sub 1^, . . . , x^sub n^] = h (x^sub 1^ + . . . + x^sub n^) wheneve...
Gespeichert in:
Veröffentlicht in: | Aequationes mathematicae 1998-02, Vol.55 (1), p.73-78 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) It is proved that, for an arbitrary field K not of characteristic 2 and arbitrary ..., if functions f : K[arrow right]K and h : K[arrow right]K satisfy f [x^sub 1^, . . . , x^sub n^] = h (x^sub 1^ + . . . + x^sub n^) whenever x^sub 1^, . . . , x^sub n^ are distinct elements of K, then f is equal to a polynomial of degree at most n over K. (Here f [x^sub 1^, . . . , x^sub n^] denotes the divided difference of f at the distinct points x^sub 1^, . . . , x^sub n^.) The case of a field of characteristic 2 is also considered. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0001-9054 1420-8903 |
DOI: | 10.1007/PL00000046 |