A divided-difference characterization of polynomials over a general field

(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) It is proved that, for an arbitrary field K not of characteristic 2 and arbitrary ..., if functions f : K[arrow right]K and h : K[arrow right]K satisfy f [x^sub 1^, . . . , x^sub n^] = h (x^sub 1^ + . . . + x^sub n^) wheneve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aequationes mathematicae 1998-02, Vol.55 (1), p.73-78
Hauptverfasser: Davies, R. O., Rousseau, G.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) It is proved that, for an arbitrary field K not of characteristic 2 and arbitrary ..., if functions f : K[arrow right]K and h : K[arrow right]K satisfy f [x^sub 1^, . . . , x^sub n^] = h (x^sub 1^ + . . . + x^sub n^) whenever x^sub 1^, . . . , x^sub n^ are distinct elements of K, then f is equal to a polynomial of degree at most n over K. (Here f [x^sub 1^, . . . , x^sub n^] denotes the divided difference of f at the distinct points x^sub 1^, . . . , x^sub n^.) The case of a field of characteristic 2 is also considered. [PUBLICATION ABSTRACT]
ISSN:0001-9054
1420-8903
DOI:10.1007/PL00000046