High Rayleigh number convection in a three-dimensional porous medium

High-resolution numerical simulations of statistically steady convection in a three-dimensional porous medium are presented for Rayleigh numbers $Ra \leqslant 2 \times 10^4$ . Measurements of the Nusselt number $Nu$ in the range $1750 \leqslant Ra \leqslant 2 \times 10^4$ are well fitted by a relati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2014-06, Vol.748, p.879-895
Hauptverfasser: Hewitt, Duncan R., Neufeld, Jerome A., Lister, John R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High-resolution numerical simulations of statistically steady convection in a three-dimensional porous medium are presented for Rayleigh numbers $Ra \leqslant 2 \times 10^4$ . Measurements of the Nusselt number $Nu$ in the range $1750 \leqslant Ra \leqslant 2 \times 10^4$ are well fitted by a relationship of the form $Nu = \alpha _3 Ra + \beta _3$ , for $\alpha _3 = 9.6 \times 10^{-3}$ and $\beta _3 = 4.6$ . This fit indicates that the classical linear scaling $Nu \sim Ra$ is attained, and that $Nu$ is asymptotically approximately $40\, \%$ larger than in two dimensions. The dynamical flow structure in the range $1750 \leqslant Ra \leqslant 2\times 10^4$ is analysed, and the interior of the flow is found to be increasingly well described as $Ra \to \infty $ by a heat-exchanger model, which describes steady interleaving columnar flow with horizontal wavenumber $k$ and a linear background temperature field. Measurements of the interior wavenumber are approximately fitted by $k\sim Ra^{0.52 \pm 0.05}$ , which is distinguishably stronger than the two-dimensional scaling of $k\sim Ra^{0.4}$ .
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2014.216