Loss of HIF-1[alpha] impairs GLUT4 translocation and glucose uptake by the skeletal muscle cells
Defects in glucose uptake by the skeletal muscle cause diseases linked to metabolic disturbance such as type 2 diabetes. The molecular mechanism determining glucose disposal in the skeletal muscle in response to cellular stimuli including insulin, however, remains largely unknown. The hypoxia-induci...
Gespeichert in:
Veröffentlicht in: | American journal of physiology: endocrinology and metabolism 2014-05, Vol.306 (9), p.E1065 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Defects in glucose uptake by the skeletal muscle cause diseases linked to metabolic disturbance such as type 2 diabetes. The molecular mechanism determining glucose disposal in the skeletal muscle in response to cellular stimuli including insulin, however, remains largely unknown. The hypoxia-inducible factor-1α (HIF-1α) is a transcription factor operating in the cellular adaptive response to hypoxic conditions. Recent studies have uncovered pleiotropic actions of HIF-1α in the homeostatic response to various cellular stimuli, including insulin under normoxic conditions. Thus we hypothesized HIF-1α is involved in the regulation of glucose metabolism stimulated by insulin in the skeletal muscle. To this end, we generated C^sub 2^C^sub 12^ myocytes in which HIF-1α is knocked down by short-hairpin RNA and examined the intracellular signaling cascade and glucose uptake subsequent to insulin stimulation. Knockdown of HIF-1α expression in the skeletal muscle cells resulted in abrogation of insulin-stimulated glucose uptake associated with impaired mobilization of glucose transporter 4 (GLUT4) to the plasma membrane. Such defect seemed to be caused by reduced phosphorylation of the protein kinase B substrate of 160 kDa (AS160). AS160 phosphorylation and GLUT4 translocation by AMP-activated protein kinase activation were abrogated as well. In addition, expression of the constitutively active mutant of HIF-1α (CA-HIF-1α) or upregulation of endogenous HIF-1α in C^sub 2^C^sub 12^ cells shows AS160 phosphorylation comparable to the insulin-stimulated level even in the absence of insulin. Accordingly GLUT4 translocation was increased in the cells expressing CA-HIF1α. Taken together, HIF-1α is a determinant for GLUT4-mediated glucose uptake in the skeletal muscle cells thus as a possible target to alleviate impaired glucose metabolism in, e.g., type 2 diabetes. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0193-1849 1522-1555 |