Orthogonal Invariance and Identifiability

Matrix variables are ubiquitous in modern optimization, in part because variational properties of useful matrix functions often expedite standard optimization algorithms. Convexity is one important such property: permutation-invariant convex functions of the eigenvalues of a symmetric matrix are con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on matrix analysis and applications 2014-01, Vol.35 (2), p.580-598
Hauptverfasser: Daniilidis, A., Drusvyatskiy, D., Lewis, A. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Matrix variables are ubiquitous in modern optimization, in part because variational properties of useful matrix functions often expedite standard optimization algorithms. Convexity is one important such property: permutation-invariant convex functions of the eigenvalues of a symmetric matrix are convex, leading to the wide applicability of semidefinite programming algorithms. We prove the analogous result for the property of "identifiability," a notion central to many active-set-type optimization algorithms. [PUBLICATION ABSTRACT]
ISSN:0895-4798
1095-7162
DOI:10.1137/130916710