Orthogonal Invariance and Identifiability
Matrix variables are ubiquitous in modern optimization, in part because variational properties of useful matrix functions often expedite standard optimization algorithms. Convexity is one important such property: permutation-invariant convex functions of the eigenvalues of a symmetric matrix are con...
Gespeichert in:
Veröffentlicht in: | SIAM journal on matrix analysis and applications 2014-01, Vol.35 (2), p.580-598 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Matrix variables are ubiquitous in modern optimization, in part because variational properties of useful matrix functions often expedite standard optimization algorithms. Convexity is one important such property: permutation-invariant convex functions of the eigenvalues of a symmetric matrix are convex, leading to the wide applicability of semidefinite programming algorithms. We prove the analogous result for the property of "identifiability," a notion central to many active-set-type optimization algorithms. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0895-4798 1095-7162 |
DOI: | 10.1137/130916710 |