Zeon Algebra and Combinatorial Identities

We show that the ordinary derivative of a real analytic function of one variable can be realized as a Grassmann-Berezin-type integration over the Zeon algebra, the Z-integral. As a by-product of this representation, we give new proofs of the Faà di Bruno formula and Spivey's identity [M. Z. Spi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM review 2014-01, Vol.56 (2), p.353-370
Hauptverfasser: Neto, Antônio Francisco, dos Anjos, Petrus H. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that the ordinary derivative of a real analytic function of one variable can be realized as a Grassmann-Berezin-type integration over the Zeon algebra, the Z-integral. As a by-product of this representation, we give new proofs of the Faà di Bruno formula and Spivey's identity [M. Z. Spivey, J. Integer Seq., 11 (2008), 08.2.5], and we recover the representation of the Stirling numbers of the second kind and the Bell numbers of Staples and Schott [European J. Combin., 29 (2008), pp. 1133–1138]. The approach described here is suitable to accommodate new Z-integral representations including Stirling numbers of the first kind, central Delannoy, Euler, Fibonacci, and Genocchi numbers, and the special polynomials of Bell, generalized Bell, Hermite, and Laguerre.
ISSN:0036-1445
1095-7200
DOI:10.1137/130906684