Zeon Algebra and Combinatorial Identities
We show that the ordinary derivative of a real analytic function of one variable can be realized as a Grassmann-Berezin-type integration over the Zeon algebra, the Z-integral. As a by-product of this representation, we give new proofs of the Faà di Bruno formula and Spivey's identity [M. Z. Spi...
Gespeichert in:
Veröffentlicht in: | SIAM review 2014-01, Vol.56 (2), p.353-370 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that the ordinary derivative of a real analytic function of one variable can be realized as a Grassmann-Berezin-type integration over the Zeon algebra, the Z-integral. As a by-product of this representation, we give new proofs of the Faà di Bruno formula and Spivey's identity [M. Z. Spivey, J. Integer Seq., 11 (2008), 08.2.5], and we recover the representation of the Stirling numbers of the second kind and the Bell numbers of Staples and Schott [European J. Combin., 29 (2008), pp. 1133–1138]. The approach described here is suitable to accommodate new Z-integral representations including Stirling numbers of the first kind, central Delannoy, Euler, Fibonacci, and Genocchi numbers, and the special polynomials of Bell, generalized Bell, Hermite, and Laguerre. |
---|---|
ISSN: | 0036-1445 1095-7200 |
DOI: | 10.1137/130906684 |