A Geometric Perspective to Multiple-Unicast Network Coding

The multiple-unicast network coding conjecture states that for multiple unicast sessions in an undirected network, network coding is equivalent to routing. Simple and intuitive as it appears, the conjecture has remained open since its proposal in 2004, and is now a well-known unsolved problem in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2014-05, Vol.60 (5), p.2884-2895
Hauptverfasser: Xiahou, T, Li, Z, Wu, C, Huang, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The multiple-unicast network coding conjecture states that for multiple unicast sessions in an undirected network, network coding is equivalent to routing. Simple and intuitive as it appears, the conjecture has remained open since its proposal in 2004, and is now a well-known unsolved problem in the field of network coding. Based on a recently proposed tool of space information flow, we present a geometric framework for analyzing the multiple-unicast conjecture. The framework consists of four major steps, in which the conjecture is transformed from its throughput version to cost version, from the graph domain to the space domain, and then from high dimension to 1-D, where it is to be eventually proved. We apply the geometric framework to derive unified proofs to known results of the conjecture, as well as new results previously unknown. A possible proof to the conjecture based on this framework is outlined.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2014.2308998