Molecular weight distributions of acetylated lignocellulosic biomasses recovered from an ionic liquid system
Recently, a method was presented for the dissolution and nuclear magnetic resonance analysis of cell wall components in lignocellulosic biomass, which involves cell wall ball-milling, dissolution in ionic liquids (ILs), in situ acetylation, and the recovery of acetylated materials. However, the diss...
Gespeichert in:
Veröffentlicht in: | Holzforschung 2013-10, Vol.67 (7), p.721-726 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recently, a method was presented for the dissolution and nuclear magnetic resonance analysis of cell wall components in lignocellulosic biomass, which involves cell wall ball-milling, dissolution in ionic liquids (ILs), in situ acetylation, and the recovery of acetylated materials. However, the dissolution in ILs and the relatively long ball-milling times may partially degrade the plant cell wall components. In the present study, the molecular weight (MW) distributions of acetylated biomasses from fir (
), birch (
), and bamboo (
) recovered from IL systems were examined by size exclusion chromatography. The effects of IL types, cosolvents, dissolution temperatures and times, and ball-milling times were evaluated. The MW of acetylated fir woods recovered from 1-allyl-3-methylimidazolium chloride at 30–80°C or from 1-butyl-3-methylimidazolium chloride at 100°C for 2 h were similar to those materials that were recovered from the
-methylimidazole/dimethyl sulfoxide system. In contrast, a significant decrease in MW was observed with 1-ethyl-3-methylimidazolium acetate ([Emim]OAc) even at 30°C. The degradation of cell wall components in [Emim]OAc was reduced to some extent in the presence of
-dimethylacetamide or pyridine. The MW decreased gradually with increased ball-milling time. |
---|---|
ISSN: | 0018-3830 1437-434X |
DOI: | 10.1515/hf-2012-0192 |