Steady state solutions to the conserved Kuramoto–Sivashinsky equation

We study stationary solutions to the conserved Kuramoto–Sivashinsky equation t h+ y 2 f 48(f+12)h+ y 2 h+f 12( y h) 2 =0.$ \partial _th+\partial ^2_{y}\left( \frac{f\alpha }{48}(f\alpha +12\delta )h+\partial ^2_{y}h+\frac{f}{12}(\partial _yh)^2\right)=0. $ This equation has recently been proposed to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in pure and applied mathematics (Berlin, Germany) Germany), 2012-01, Vol.3 (1), p.59-65
Hauptverfasser: Trojette, Hela, Eldoussouki, Ayman, Abaidi, Mohamed, Guedda, Mohammed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study stationary solutions to the conserved Kuramoto–Sivashinsky equation t h+ y 2 f 48(f+12)h+ y 2 h+f 12( y h) 2 =0.$ \partial _th+\partial ^2_{y}\left( \frac{f\alpha }{48}(f\alpha +12\delta )h+\partial ^2_{y}h+\frac{f}{12}(\partial _yh)^2\right)=0. $ This equation has recently been proposed to describe the step meandering instability on a vicinal surface. Attention is focussed on stationary periodic solutions which are the key for the coarsening process.
ISSN:1867-1152
1869-6090
DOI:10.1515/apam.2011.010