Steady state solutions to the conserved Kuramoto–Sivashinsky equation
We study stationary solutions to the conserved Kuramoto–Sivashinsky equation t h+ y 2 f 48(f+12)h+ y 2 h+f 12( y h) 2 =0.$ \partial _th+\partial ^2_{y}\left( \frac{f\alpha }{48}(f\alpha +12\delta )h+\partial ^2_{y}h+\frac{f}{12}(\partial _yh)^2\right)=0. $ This equation has recently been proposed to...
Gespeichert in:
Veröffentlicht in: | Advances in pure and applied mathematics (Berlin, Germany) Germany), 2012-01, Vol.3 (1), p.59-65 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study stationary solutions to the conserved Kuramoto–Sivashinsky equation t h+ y 2 f 48(f+12)h+ y 2 h+f 12( y h) 2 =0.$ \partial _th+\partial ^2_{y}\left( \frac{f\alpha }{48}(f\alpha +12\delta )h+\partial ^2_{y}h+\frac{f}{12}(\partial _yh)^2\right)=0. $ This equation has recently been proposed to describe the step meandering instability on a vicinal surface. Attention is focussed on stationary periodic solutions which are the key for the coarsening process. |
---|---|
ISSN: | 1867-1152 1869-6090 |
DOI: | 10.1515/apam.2011.010 |