Modeling and Parametric Study of a Single Solid Oxide Fuel Cell by Finite Element Method

A 2D isothermal axisymmetric model of an anode‐supported solid oxide fuel cell has been developed. The model, which is based on finite element approach, comprises electronic and ionic charge balance, Butler–Volmer charge transfer kinetic, flow distribution and gas phase mass balance in both channels...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel cells (Weinheim an der Bergstrasse, Germany) Germany), 2014-04, Vol.14 (2), p.189-199
Hauptverfasser: Daneshvar, K., Dotelli, G., Cristiani, C., Pelosato, R., Santarelli, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A 2D isothermal axisymmetric model of an anode‐supported solid oxide fuel cell has been developed. The model, which is based on finite element approach, comprises electronic and ionic charge balance, Butler–Volmer charge transfer kinetic, flow distribution and gas phase mass balance in both channels and porous electrodes. The model has been validated using available experimental data coming from a single anode‐supported cell comprising Ni–YSZ/YSZ/LSM–YSZ as anode, electrolyte and cathode, respectively. Hydrogen and steam were used as fuel inlet and air as an oxidant. The validation has been carried out at 1 atm, 1,500 ml min–1 air flow rate and three different operating conditions of temperature and fuel flow rate: 1,073 K and 400 ml min–1, 1,073 K and 500 ml min–1, and 1,003 K and 400 ml min–1. The polarization and power density versus current density curves show a good agreement with the experimental data. A parametric analysis has been carried out to highlight which parameters have main effect on the overall cell performance as measured by polarization curve, especially focusing on the influence of two geometrical characteristics, temperature and some effective material properties.
ISSN:1615-6846
1615-6854
DOI:10.1002/fuce.201300235