Influence of CNF content on microstructure and fracture toughness of CNF/alumina composites
Dense 0.4–5.0 wt % carbon nanofiber (CNF)/alumina composites were fabricated by plasma activated sintering. The microstructure—particularly the CNFs distribution—of composites containing different amounts of CNFs was observed in detail, and the influence of the additive amounts of CNF on the microst...
Gespeichert in:
Veröffentlicht in: | Journal of the Ceramic Society of Japan 2014/04/01, Vol.122(1424), pp.292-299 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 299 |
---|---|
container_issue | 1424 |
container_start_page | 292 |
container_title | Journal of the Ceramic Society of Japan |
container_volume | 122 |
creator | UEDA, Naoki YAMAKAMI, Tomohiko YAMAGUCHI, Tomohiro USUI, Yuki AOKI, Kaoru ENDO, Morinobu SAITO, Naoto TARUTA, Seiichi |
description | Dense 0.4–5.0 wt % carbon nanofiber (CNF)/alumina composites were fabricated by plasma activated sintering. The microstructure—particularly the CNFs distribution—of composites containing different amounts of CNFs was observed in detail, and the influence of the additive amounts of CNF on the microstructure and the fracture toughness of the composites were investigated. The ratio of CNFs distributed individually in the composites decreased with an increase in the addition of CNFs, and the other CNFs formed bundles; notably three-quarters of the CNFs formed bundles in the 5.0 wt % CNF/alumina composite. The alumina grain size distribution of the composites became narrower to smaller grain size side and the average alumina grain size of the composites decreased with an increase in the addition of CNFs from 0.4 to 1.6 wt %. However, the average alumina grain size of the composites did not vary greatly with an increase in the addition of CNFs from 1.6 to 5.0 wt %, because the CNF bundles formed in the 2.5 and 5.0 wt % CNF/alumina composites lowered the grain growth retardation effect of the CNFs. The 1.6 wt % CNF/alumina composite exhibited the highest fracture toughness, because three-fifths of the CNFs distributed individually and uniformly in alumina grain boundaries. |
doi_str_mv | 10.2109/jcersj2.122.292 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1512809771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3266898631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c592t-a15a48a5cbdeec48e7302ed11ee1a98a3bd7e72ebb1c20dec061dd7b5ab901ad3</originalsourceid><addsrcrecordid>eNpVkD1PwzAQhiMEEqUws0ZiTuuz8-GMKKLQqioDZWKwHPvSJkqcYjsD_56UVpWY7k563jvdEwSPQGYUSD5vFFrX0BlQOqM5vQomwGIepQlLrseecxqRLGa3wZ1zDSEpjRmfBF9LU7UDGoVhX4XFZhGq3ng0PuxN2NXK9s7bQfnBYiiNDisrT4Pvh93eoHPn3Fy2Q1cbOea7Q-9qj-4-uKlk6_DhXKfB5-JlW7xF6_fXZfG8jlSSUx9JSGTMZaJKjahijhkjFDUAIsicS1bqDDOKZQmKEo2KpKB1ViayzAlIzabB02nvwfbfAzovmn6wZjwpIAHKSZ5lMFLzE3X8yVmsxMHWnbQ_Aog4GhRng2I0KEaDY2JzSjTOyx1eeGl9rVr8x0NM479mVXysxBYYpOQCqr20Ag37Bf_lgoE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1512809771</pqid></control><display><type>article</type><title>Influence of CNF content on microstructure and fracture toughness of CNF/alumina composites</title><source>J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><creator>UEDA, Naoki ; YAMAKAMI, Tomohiko ; YAMAGUCHI, Tomohiro ; USUI, Yuki ; AOKI, Kaoru ; ENDO, Morinobu ; SAITO, Naoto ; TARUTA, Seiichi</creator><creatorcontrib>UEDA, Naoki ; YAMAKAMI, Tomohiko ; YAMAGUCHI, Tomohiro ; USUI, Yuki ; AOKI, Kaoru ; ENDO, Morinobu ; SAITO, Naoto ; TARUTA, Seiichi</creatorcontrib><description>Dense 0.4–5.0 wt % carbon nanofiber (CNF)/alumina composites were fabricated by plasma activated sintering. The microstructure—particularly the CNFs distribution—of composites containing different amounts of CNFs was observed in detail, and the influence of the additive amounts of CNF on the microstructure and the fracture toughness of the composites were investigated. The ratio of CNFs distributed individually in the composites decreased with an increase in the addition of CNFs, and the other CNFs formed bundles; notably three-quarters of the CNFs formed bundles in the 5.0 wt % CNF/alumina composite. The alumina grain size distribution of the composites became narrower to smaller grain size side and the average alumina grain size of the composites decreased with an increase in the addition of CNFs from 0.4 to 1.6 wt %. However, the average alumina grain size of the composites did not vary greatly with an increase in the addition of CNFs from 1.6 to 5.0 wt %, because the CNF bundles formed in the 2.5 and 5.0 wt % CNF/alumina composites lowered the grain growth retardation effect of the CNFs. The 1.6 wt % CNF/alumina composite exhibited the highest fracture toughness, because three-fifths of the CNFs distributed individually and uniformly in alumina grain boundaries.</description><identifier>ISSN: 1882-0743</identifier><identifier>EISSN: 1348-6535</identifier><identifier>DOI: 10.2109/jcersj2.122.292</identifier><language>eng</language><publisher>Tokyo: The Ceramic Society of Japan</publisher><subject>Alumina ; Carbon nanofibers ; Composite ; Fracture toughness ; Microstructure</subject><ispartof>Journal of the Ceramic Society of Japan, 2014/04/01, Vol.122(1424), pp.292-299</ispartof><rights>2014 The Ceramic Society of Japan</rights><rights>Copyright Japan Science and Technology Agency 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c592t-a15a48a5cbdeec48e7302ed11ee1a98a3bd7e72ebb1c20dec061dd7b5ab901ad3</citedby><cites>FETCH-LOGICAL-c592t-a15a48a5cbdeec48e7302ed11ee1a98a3bd7e72ebb1c20dec061dd7b5ab901ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1881,4022,27921,27922,27923</link.rule.ids></links><search><creatorcontrib>UEDA, Naoki</creatorcontrib><creatorcontrib>YAMAKAMI, Tomohiko</creatorcontrib><creatorcontrib>YAMAGUCHI, Tomohiro</creatorcontrib><creatorcontrib>USUI, Yuki</creatorcontrib><creatorcontrib>AOKI, Kaoru</creatorcontrib><creatorcontrib>ENDO, Morinobu</creatorcontrib><creatorcontrib>SAITO, Naoto</creatorcontrib><creatorcontrib>TARUTA, Seiichi</creatorcontrib><title>Influence of CNF content on microstructure and fracture toughness of CNF/alumina composites</title><title>Journal of the Ceramic Society of Japan</title><addtitle>J. Ceram. Soc. Japan</addtitle><description>Dense 0.4–5.0 wt % carbon nanofiber (CNF)/alumina composites were fabricated by plasma activated sintering. The microstructure—particularly the CNFs distribution—of composites containing different amounts of CNFs was observed in detail, and the influence of the additive amounts of CNF on the microstructure and the fracture toughness of the composites were investigated. The ratio of CNFs distributed individually in the composites decreased with an increase in the addition of CNFs, and the other CNFs formed bundles; notably three-quarters of the CNFs formed bundles in the 5.0 wt % CNF/alumina composite. The alumina grain size distribution of the composites became narrower to smaller grain size side and the average alumina grain size of the composites decreased with an increase in the addition of CNFs from 0.4 to 1.6 wt %. However, the average alumina grain size of the composites did not vary greatly with an increase in the addition of CNFs from 1.6 to 5.0 wt %, because the CNF bundles formed in the 2.5 and 5.0 wt % CNF/alumina composites lowered the grain growth retardation effect of the CNFs. The 1.6 wt % CNF/alumina composite exhibited the highest fracture toughness, because three-fifths of the CNFs distributed individually and uniformly in alumina grain boundaries.</description><subject>Alumina</subject><subject>Carbon nanofibers</subject><subject>Composite</subject><subject>Fracture toughness</subject><subject>Microstructure</subject><issn>1882-0743</issn><issn>1348-6535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpVkD1PwzAQhiMEEqUws0ZiTuuz8-GMKKLQqioDZWKwHPvSJkqcYjsD_56UVpWY7k563jvdEwSPQGYUSD5vFFrX0BlQOqM5vQomwGIepQlLrseecxqRLGa3wZ1zDSEpjRmfBF9LU7UDGoVhX4XFZhGq3ng0PuxN2NXK9s7bQfnBYiiNDisrT4Pvh93eoHPn3Fy2Q1cbOea7Q-9qj-4-uKlk6_DhXKfB5-JlW7xF6_fXZfG8jlSSUx9JSGTMZaJKjahijhkjFDUAIsicS1bqDDOKZQmKEo2KpKB1ViayzAlIzabB02nvwfbfAzovmn6wZjwpIAHKSZ5lMFLzE3X8yVmsxMHWnbQ_Aog4GhRng2I0KEaDY2JzSjTOyx1eeGl9rVr8x0NM479mVXysxBYYpOQCqr20Ag37Bf_lgoE</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>UEDA, Naoki</creator><creator>YAMAKAMI, Tomohiko</creator><creator>YAMAGUCHI, Tomohiro</creator><creator>USUI, Yuki</creator><creator>AOKI, Kaoru</creator><creator>ENDO, Morinobu</creator><creator>SAITO, Naoto</creator><creator>TARUTA, Seiichi</creator><general>The Ceramic Society of Japan</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>2014</creationdate><title>Influence of CNF content on microstructure and fracture toughness of CNF/alumina composites</title><author>UEDA, Naoki ; YAMAKAMI, Tomohiko ; YAMAGUCHI, Tomohiro ; USUI, Yuki ; AOKI, Kaoru ; ENDO, Morinobu ; SAITO, Naoto ; TARUTA, Seiichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c592t-a15a48a5cbdeec48e7302ed11ee1a98a3bd7e72ebb1c20dec061dd7b5ab901ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alumina</topic><topic>Carbon nanofibers</topic><topic>Composite</topic><topic>Fracture toughness</topic><topic>Microstructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>UEDA, Naoki</creatorcontrib><creatorcontrib>YAMAKAMI, Tomohiko</creatorcontrib><creatorcontrib>YAMAGUCHI, Tomohiro</creatorcontrib><creatorcontrib>USUI, Yuki</creatorcontrib><creatorcontrib>AOKI, Kaoru</creatorcontrib><creatorcontrib>ENDO, Morinobu</creatorcontrib><creatorcontrib>SAITO, Naoto</creatorcontrib><creatorcontrib>TARUTA, Seiichi</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the Ceramic Society of Japan</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>UEDA, Naoki</au><au>YAMAKAMI, Tomohiko</au><au>YAMAGUCHI, Tomohiro</au><au>USUI, Yuki</au><au>AOKI, Kaoru</au><au>ENDO, Morinobu</au><au>SAITO, Naoto</au><au>TARUTA, Seiichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of CNF content on microstructure and fracture toughness of CNF/alumina composites</atitle><jtitle>Journal of the Ceramic Society of Japan</jtitle><addtitle>J. Ceram. Soc. Japan</addtitle><date>2014</date><risdate>2014</risdate><volume>122</volume><issue>1424</issue><spage>292</spage><epage>299</epage><pages>292-299</pages><issn>1882-0743</issn><eissn>1348-6535</eissn><abstract>Dense 0.4–5.0 wt % carbon nanofiber (CNF)/alumina composites were fabricated by plasma activated sintering. The microstructure—particularly the CNFs distribution—of composites containing different amounts of CNFs was observed in detail, and the influence of the additive amounts of CNF on the microstructure and the fracture toughness of the composites were investigated. The ratio of CNFs distributed individually in the composites decreased with an increase in the addition of CNFs, and the other CNFs formed bundles; notably three-quarters of the CNFs formed bundles in the 5.0 wt % CNF/alumina composite. The alumina grain size distribution of the composites became narrower to smaller grain size side and the average alumina grain size of the composites decreased with an increase in the addition of CNFs from 0.4 to 1.6 wt %. However, the average alumina grain size of the composites did not vary greatly with an increase in the addition of CNFs from 1.6 to 5.0 wt %, because the CNF bundles formed in the 2.5 and 5.0 wt % CNF/alumina composites lowered the grain growth retardation effect of the CNFs. The 1.6 wt % CNF/alumina composite exhibited the highest fracture toughness, because three-fifths of the CNFs distributed individually and uniformly in alumina grain boundaries.</abstract><cop>Tokyo</cop><pub>The Ceramic Society of Japan</pub><doi>10.2109/jcersj2.122.292</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1882-0743 |
ispartof | Journal of the Ceramic Society of Japan, 2014/04/01, Vol.122(1424), pp.292-299 |
issn | 1882-0743 1348-6535 |
language | eng |
recordid | cdi_proquest_journals_1512809771 |
source | J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese |
subjects | Alumina Carbon nanofibers Composite Fracture toughness Microstructure |
title | Influence of CNF content on microstructure and fracture toughness of CNF/alumina composites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A08%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20CNF%20content%20on%20microstructure%20and%20fracture%20toughness%20of%20CNF/alumina%20composites&rft.jtitle=Journal%20of%20the%20Ceramic%20Society%20of%20Japan&rft.au=UEDA,%20Naoki&rft.date=2014&rft.volume=122&rft.issue=1424&rft.spage=292&rft.epage=299&rft.pages=292-299&rft.issn=1882-0743&rft.eissn=1348-6535&rft_id=info:doi/10.2109/jcersj2.122.292&rft_dat=%3Cproquest_cross%3E3266898631%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1512809771&rft_id=info:pmid/&rfr_iscdi=true |