Influence of CNF content on microstructure and fracture toughness of CNF/alumina composites

Dense 0.4–5.0 wt % carbon nanofiber (CNF)/alumina composites were fabricated by plasma activated sintering. The microstructure—particularly the CNFs distribution—of composites containing different amounts of CNFs was observed in detail, and the influence of the additive amounts of CNF on the microst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Ceramic Society of Japan 2014/04/01, Vol.122(1424), pp.292-299
Hauptverfasser: UEDA, Naoki, YAMAKAMI, Tomohiko, YAMAGUCHI, Tomohiro, USUI, Yuki, AOKI, Kaoru, ENDO, Morinobu, SAITO, Naoto, TARUTA, Seiichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 299
container_issue 1424
container_start_page 292
container_title Journal of the Ceramic Society of Japan
container_volume 122
creator UEDA, Naoki
YAMAKAMI, Tomohiko
YAMAGUCHI, Tomohiro
USUI, Yuki
AOKI, Kaoru
ENDO, Morinobu
SAITO, Naoto
TARUTA, Seiichi
description Dense 0.4–5.0 wt % carbon nanofiber (CNF)/alumina composites were fabricated by plasma activated sintering. The microstructure—particularly the CNFs distribution—of composites containing different amounts of CNFs was observed in detail, and the influence of the additive amounts of CNF on the microstructure and the fracture toughness of the composites were investigated. The ratio of CNFs distributed individually in the composites decreased with an increase in the addition of CNFs, and the other CNFs formed bundles; notably three-quarters of the CNFs formed bundles in the 5.0 wt % CNF/alumina composite. The alumina grain size distribution of the composites became narrower to smaller grain size side and the average alumina grain size of the composites decreased with an increase in the addition of CNFs from 0.4 to 1.6 wt %. However, the average alumina grain size of the composites did not vary greatly with an increase in the addition of CNFs from 1.6 to 5.0 wt %, because the CNF bundles formed in the 2.5 and 5.0 wt % CNF/alumina composites lowered the grain growth retardation effect of the CNFs. The 1.6 wt % CNF/alumina composite exhibited the highest fracture toughness, because three-fifths of the CNFs distributed individually and uniformly in alumina grain boundaries.
doi_str_mv 10.2109/jcersj2.122.292
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1512809771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3266898631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c592t-a15a48a5cbdeec48e7302ed11ee1a98a3bd7e72ebb1c20dec061dd7b5ab901ad3</originalsourceid><addsrcrecordid>eNpVkD1PwzAQhiMEEqUws0ZiTuuz8-GMKKLQqioDZWKwHPvSJkqcYjsD_56UVpWY7k563jvdEwSPQGYUSD5vFFrX0BlQOqM5vQomwGIepQlLrseecxqRLGa3wZ1zDSEpjRmfBF9LU7UDGoVhX4XFZhGq3ng0PuxN2NXK9s7bQfnBYiiNDisrT4Pvh93eoHPn3Fy2Q1cbOea7Q-9qj-4-uKlk6_DhXKfB5-JlW7xF6_fXZfG8jlSSUx9JSGTMZaJKjahijhkjFDUAIsicS1bqDDOKZQmKEo2KpKB1ViayzAlIzabB02nvwfbfAzovmn6wZjwpIAHKSZ5lMFLzE3X8yVmsxMHWnbQ_Aog4GhRng2I0KEaDY2JzSjTOyx1eeGl9rVr8x0NM479mVXysxBYYpOQCqr20Ag37Bf_lgoE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1512809771</pqid></control><display><type>article</type><title>Influence of CNF content on microstructure and fracture toughness of CNF/alumina composites</title><source>J-STAGE (Japan Science &amp; Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><creator>UEDA, Naoki ; YAMAKAMI, Tomohiko ; YAMAGUCHI, Tomohiro ; USUI, Yuki ; AOKI, Kaoru ; ENDO, Morinobu ; SAITO, Naoto ; TARUTA, Seiichi</creator><creatorcontrib>UEDA, Naoki ; YAMAKAMI, Tomohiko ; YAMAGUCHI, Tomohiro ; USUI, Yuki ; AOKI, Kaoru ; ENDO, Morinobu ; SAITO, Naoto ; TARUTA, Seiichi</creatorcontrib><description>Dense 0.4–5.0 wt % carbon nanofiber (CNF)/alumina composites were fabricated by plasma activated sintering. The microstructure—particularly the CNFs distribution—of composites containing different amounts of CNFs was observed in detail, and the influence of the additive amounts of CNF on the microstructure and the fracture toughness of the composites were investigated. The ratio of CNFs distributed individually in the composites decreased with an increase in the addition of CNFs, and the other CNFs formed bundles; notably three-quarters of the CNFs formed bundles in the 5.0 wt % CNF/alumina composite. The alumina grain size distribution of the composites became narrower to smaller grain size side and the average alumina grain size of the composites decreased with an increase in the addition of CNFs from 0.4 to 1.6 wt %. However, the average alumina grain size of the composites did not vary greatly with an increase in the addition of CNFs from 1.6 to 5.0 wt %, because the CNF bundles formed in the 2.5 and 5.0 wt % CNF/alumina composites lowered the grain growth retardation effect of the CNFs. The 1.6 wt % CNF/alumina composite exhibited the highest fracture toughness, because three-fifths of the CNFs distributed individually and uniformly in alumina grain boundaries.</description><identifier>ISSN: 1882-0743</identifier><identifier>EISSN: 1348-6535</identifier><identifier>DOI: 10.2109/jcersj2.122.292</identifier><language>eng</language><publisher>Tokyo: The Ceramic Society of Japan</publisher><subject>Alumina ; Carbon nanofibers ; Composite ; Fracture toughness ; Microstructure</subject><ispartof>Journal of the Ceramic Society of Japan, 2014/04/01, Vol.122(1424), pp.292-299</ispartof><rights>2014 The Ceramic Society of Japan</rights><rights>Copyright Japan Science and Technology Agency 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c592t-a15a48a5cbdeec48e7302ed11ee1a98a3bd7e72ebb1c20dec061dd7b5ab901ad3</citedby><cites>FETCH-LOGICAL-c592t-a15a48a5cbdeec48e7302ed11ee1a98a3bd7e72ebb1c20dec061dd7b5ab901ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1881,4022,27921,27922,27923</link.rule.ids></links><search><creatorcontrib>UEDA, Naoki</creatorcontrib><creatorcontrib>YAMAKAMI, Tomohiko</creatorcontrib><creatorcontrib>YAMAGUCHI, Tomohiro</creatorcontrib><creatorcontrib>USUI, Yuki</creatorcontrib><creatorcontrib>AOKI, Kaoru</creatorcontrib><creatorcontrib>ENDO, Morinobu</creatorcontrib><creatorcontrib>SAITO, Naoto</creatorcontrib><creatorcontrib>TARUTA, Seiichi</creatorcontrib><title>Influence of CNF content on microstructure and fracture toughness of CNF/alumina composites</title><title>Journal of the Ceramic Society of Japan</title><addtitle>J. Ceram. Soc. Japan</addtitle><description>Dense 0.4–5.0 wt % carbon nanofiber (CNF)/alumina composites were fabricated by plasma activated sintering. The microstructure—particularly the CNFs distribution—of composites containing different amounts of CNFs was observed in detail, and the influence of the additive amounts of CNF on the microstructure and the fracture toughness of the composites were investigated. The ratio of CNFs distributed individually in the composites decreased with an increase in the addition of CNFs, and the other CNFs formed bundles; notably three-quarters of the CNFs formed bundles in the 5.0 wt % CNF/alumina composite. The alumina grain size distribution of the composites became narrower to smaller grain size side and the average alumina grain size of the composites decreased with an increase in the addition of CNFs from 0.4 to 1.6 wt %. However, the average alumina grain size of the composites did not vary greatly with an increase in the addition of CNFs from 1.6 to 5.0 wt %, because the CNF bundles formed in the 2.5 and 5.0 wt % CNF/alumina composites lowered the grain growth retardation effect of the CNFs. The 1.6 wt % CNF/alumina composite exhibited the highest fracture toughness, because three-fifths of the CNFs distributed individually and uniformly in alumina grain boundaries.</description><subject>Alumina</subject><subject>Carbon nanofibers</subject><subject>Composite</subject><subject>Fracture toughness</subject><subject>Microstructure</subject><issn>1882-0743</issn><issn>1348-6535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpVkD1PwzAQhiMEEqUws0ZiTuuz8-GMKKLQqioDZWKwHPvSJkqcYjsD_56UVpWY7k563jvdEwSPQGYUSD5vFFrX0BlQOqM5vQomwGIepQlLrseecxqRLGa3wZ1zDSEpjRmfBF9LU7UDGoVhX4XFZhGq3ng0PuxN2NXK9s7bQfnBYiiNDisrT4Pvh93eoHPn3Fy2Q1cbOea7Q-9qj-4-uKlk6_DhXKfB5-JlW7xF6_fXZfG8jlSSUx9JSGTMZaJKjahijhkjFDUAIsicS1bqDDOKZQmKEo2KpKB1ViayzAlIzabB02nvwfbfAzovmn6wZjwpIAHKSZ5lMFLzE3X8yVmsxMHWnbQ_Aog4GhRng2I0KEaDY2JzSjTOyx1eeGl9rVr8x0NM479mVXysxBYYpOQCqr20Ag37Bf_lgoE</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>UEDA, Naoki</creator><creator>YAMAKAMI, Tomohiko</creator><creator>YAMAGUCHI, Tomohiro</creator><creator>USUI, Yuki</creator><creator>AOKI, Kaoru</creator><creator>ENDO, Morinobu</creator><creator>SAITO, Naoto</creator><creator>TARUTA, Seiichi</creator><general>The Ceramic Society of Japan</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>2014</creationdate><title>Influence of CNF content on microstructure and fracture toughness of CNF/alumina composites</title><author>UEDA, Naoki ; YAMAKAMI, Tomohiko ; YAMAGUCHI, Tomohiro ; USUI, Yuki ; AOKI, Kaoru ; ENDO, Morinobu ; SAITO, Naoto ; TARUTA, Seiichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c592t-a15a48a5cbdeec48e7302ed11ee1a98a3bd7e72ebb1c20dec061dd7b5ab901ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alumina</topic><topic>Carbon nanofibers</topic><topic>Composite</topic><topic>Fracture toughness</topic><topic>Microstructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>UEDA, Naoki</creatorcontrib><creatorcontrib>YAMAKAMI, Tomohiko</creatorcontrib><creatorcontrib>YAMAGUCHI, Tomohiro</creatorcontrib><creatorcontrib>USUI, Yuki</creatorcontrib><creatorcontrib>AOKI, Kaoru</creatorcontrib><creatorcontrib>ENDO, Morinobu</creatorcontrib><creatorcontrib>SAITO, Naoto</creatorcontrib><creatorcontrib>TARUTA, Seiichi</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the Ceramic Society of Japan</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>UEDA, Naoki</au><au>YAMAKAMI, Tomohiko</au><au>YAMAGUCHI, Tomohiro</au><au>USUI, Yuki</au><au>AOKI, Kaoru</au><au>ENDO, Morinobu</au><au>SAITO, Naoto</au><au>TARUTA, Seiichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of CNF content on microstructure and fracture toughness of CNF/alumina composites</atitle><jtitle>Journal of the Ceramic Society of Japan</jtitle><addtitle>J. Ceram. Soc. Japan</addtitle><date>2014</date><risdate>2014</risdate><volume>122</volume><issue>1424</issue><spage>292</spage><epage>299</epage><pages>292-299</pages><issn>1882-0743</issn><eissn>1348-6535</eissn><abstract>Dense 0.4–5.0 wt % carbon nanofiber (CNF)/alumina composites were fabricated by plasma activated sintering. The microstructure—particularly the CNFs distribution—of composites containing different amounts of CNFs was observed in detail, and the influence of the additive amounts of CNF on the microstructure and the fracture toughness of the composites were investigated. The ratio of CNFs distributed individually in the composites decreased with an increase in the addition of CNFs, and the other CNFs formed bundles; notably three-quarters of the CNFs formed bundles in the 5.0 wt % CNF/alumina composite. The alumina grain size distribution of the composites became narrower to smaller grain size side and the average alumina grain size of the composites decreased with an increase in the addition of CNFs from 0.4 to 1.6 wt %. However, the average alumina grain size of the composites did not vary greatly with an increase in the addition of CNFs from 1.6 to 5.0 wt %, because the CNF bundles formed in the 2.5 and 5.0 wt % CNF/alumina composites lowered the grain growth retardation effect of the CNFs. The 1.6 wt % CNF/alumina composite exhibited the highest fracture toughness, because three-fifths of the CNFs distributed individually and uniformly in alumina grain boundaries.</abstract><cop>Tokyo</cop><pub>The Ceramic Society of Japan</pub><doi>10.2109/jcersj2.122.292</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1882-0743
ispartof Journal of the Ceramic Society of Japan, 2014/04/01, Vol.122(1424), pp.292-299
issn 1882-0743
1348-6535
language eng
recordid cdi_proquest_journals_1512809771
source J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese
subjects Alumina
Carbon nanofibers
Composite
Fracture toughness
Microstructure
title Influence of CNF content on microstructure and fracture toughness of CNF/alumina composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A08%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20CNF%20content%20on%20microstructure%20and%20fracture%20toughness%20of%20CNF/alumina%20composites&rft.jtitle=Journal%20of%20the%20Ceramic%20Society%20of%20Japan&rft.au=UEDA,%20Naoki&rft.date=2014&rft.volume=122&rft.issue=1424&rft.spage=292&rft.epage=299&rft.pages=292-299&rft.issn=1882-0743&rft.eissn=1348-6535&rft_id=info:doi/10.2109/jcersj2.122.292&rft_dat=%3Cproquest_cross%3E3266898631%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1512809771&rft_id=info:pmid/&rfr_iscdi=true