Influence of Inorganic Phosphorus, VAM Fungi, and Irrigation Regimes on Crop Productivity and Phosphorus Transformations in Okra (Abelmoschus esculentus L.)–Pea (Pisum sativum L.) Cropping System in an Acid Alfisol

The present investigation was carried out at CSK Himachal Pradesh Agricultural University, Palampur, India, during 2009–2011 to economize inorganic phosphorus (P) and water needs of an okra (Abelmoschus esculentus)–pea (Pisum sativum) cropping system through vesicular arbuscular mycorrhizal (VAM) fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in Soil Science and Plant Analysis 2014-04, Vol.45 (7), p.953-967
Hauptverfasser: Kumar, Anil, Suri, V. K, Choudhary, Anil Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present investigation was carried out at CSK Himachal Pradesh Agricultural University, Palampur, India, during 2009–2011 to economize inorganic phosphorus (P) and water needs of an okra (Abelmoschus esculentus)–pea (Pisum sativum) cropping system through vesicular arbuscular mycorrhizal (VAM) fungi (Glomus mosseae) in a Himalayan acid Alfisol. The field experiment was replicated three times in a randomized block design comprising 14 treatments consisting of 12 treatment combinations of two VAM levels [0 and 12 kg ha ⁻¹], three phosphorus levels [50, 75, and 100% of recommended soil-test-based nitrogen (N)–P–potassium (K)], and two irrigation regimes [40 and 80% of available water-holding capacity of field soil (AWC)], in addition to one treatment with “generalized recommended NPK dose with generalized recommended irrigations (GRD)” and one treatment based on “farmers’ practice of plant nutrition and irrigation management in the region.” This article presents crop productivity and P dynamics studies during the second crop cycle of okra–pea sequence (2010–2011) and statuses of different P fractions in the soil after the second pea crop harvest during 2010–2011. Crop productivity and P uptake data in okra–pea sequence indicated that application of VAM + 75% P dose at either of two irrigation regimes did not differ significantly than GRD treatment and VAM + 100% P dose. It suggests an economy of about 25% inorganic P dose through VAM fungi. The treatments imbedded with VAM inoculation enhanced the P uptake in okra–pea system, on an average by 21% over the GRD and non-VAM-inoculated counterparts. Further, integrated application of P, VAM, and irrigation regimes evaluated in okra–pea sequence for 2 years led to greater status of water-soluble P (21%), sodium bicarbonate (NaHCO ₃)–inorganic phosphorus (Pi) (11%), sodium hydroxide (NaOH)–Pi (9%), hydrochloric acid (HCl)–extractable–P (20%) over non-VAM-inoculated counterparts and low status of organic P (NaHCO ₃-P ₒ and NaOH-P ₒ), all of which appreciably contributed to available P supply to plants in the present study in an acid Alfisol. The correlation coefficient reveals that contribution of inorganic P forms is highly correlated to crop productivity and total P uptake in okra and pea crops besides soil available P in the present study. Overall, it is concluded that VAM inoculation in okra–pea cropping system significantly enhanced the P availability to plants by way of enriching the labile-P pool such as w
ISSN:1532-2416
0010-3624
1532-2416
1532-4133
DOI:10.1080/00103624.2013.874025