Robust Eigenstructure Assignment in Geometric Control Theory

In this paper we employ the Rosenbrock system matrix pencil for the computation of output-nulling subspaces of linear time-invariant systems which appear in the solution of a large number of control and estimation problems. We also consider the problem of finding friends of these output-nulling subs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on control and optimization 2014-01, Vol.52 (2), p.960-986
Hauptverfasser: Ntogramatzidis, Lorenzo, Schmid, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we employ the Rosenbrock system matrix pencil for the computation of output-nulling subspaces of linear time-invariant systems which appear in the solution of a large number of control and estimation problems. We also consider the problem of finding friends of these output-nulling subspaces, i.e., the feedback matrices that render such subspaces invariant with respect to the closed-loop map and output-nulling with respect to the output map, and which at the same time deliver a robust closed-loop eigenstructure. We show that the methods presented in this paper offer considerably more robust eigenstructure assignment than the other commonly used methods and algorithms. [PUBLICATION ABSTRACT]
ISSN:0363-0129
1095-7138
DOI:10.1137/130912906