Antimony adsorption on kaolinite in the presence of competitive anions
Antimony (Sb) emissions to the environment are increasing, and there is a dearth of knowledge regarding Sb fate and behavior in natural systems. In natural systems, the presence of competitive anions may compete with Sb for adsorption sites on mineral surfaces, hence increasing its potential bioavai...
Gespeichert in:
Veröffentlicht in: | Environmental earth sciences 2014-04, Vol.71 (7), p.2989-2997 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Antimony (Sb) emissions to the environment are increasing, and there is a dearth of knowledge regarding Sb fate and behavior in natural systems. In natural systems, the presence of competitive anions may compete with Sb for adsorption sites on mineral surfaces, hence increasing its potential bioavailability. Accordingly, the adsorption of Sb(III) on kaolinite was investigated in the presence of competitive anions. Kinetic studies suggest that adsorption reaction of Sb(III) on kaolinite is rapid initially and becoming slow after 12 h both in binary Sb(III)–kaolinite system and in ternary Sb(III)-competitive anion–kaolinite system. The presence of PO₄ ³⁻ has a much stronger and more obvious promotive effect on the adsorption of Sb(III) on kaolinite compared with the other two anions. The adsorption data of Sb(III) on kaolinite in the absence and presence of competitive anions at three temperatures were successfully modeled using Langmuir (r ² > 0.95) and Freundlich (r ² > 0.95) isotherms. Accompanied the adsorption of Sb(III) on kaolinite, significant oxidation of Sb(III) to Sb(V) had occurred under the experimental conditions used in this study. The presence of kaolinite which has a larger specific surface area could increase the contact area between the adsorbed Sb(III) and oxygen in the bulk solution, which promoted the oxidation rate of Sb(III) to Sb(V). |
---|---|
ISSN: | 1866-6280 1866-6299 |
DOI: | 10.1007/s12665-013-2673-8 |