Failure Mitigation Techniques for 1T-1MTJ Spin-Transfer Torque MRAM Bit-cells

The emergence of spin-transfer torque magnetic RAM (STT-MRAM) as a leading candidate for future high-performance nonvolatile memory has led to increased research interest. Current STT-MRAM technology faces several major obstacles in attaining its potential. One of the major issues is in the design o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on very large scale integration (VLSI) systems 2014-02, Vol.22 (2), p.384-395
Hauptverfasser: Xuanyao Fong, Yusung Kim, Choday, Sri Harsha, Roy, Kaushik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The emergence of spin-transfer torque magnetic RAM (STT-MRAM) as a leading candidate for future high-performance nonvolatile memory has led to increased research interest. Current STT-MRAM technology faces several major obstacles in attaining its potential. One of the major issues is in the design of 1T-1MTJ STT-MRAM bit-cells under process variations: the bit-cells need to be significantly upsized to improve bit-cell failure, resulting in increased bit-cell area and power dissipation. In this paper, we analyze four circuit-level solutions that enable smaller 1T-1MTJ STT-MRAM bit-cells with improved yield, namely, bit-line voltage boosting, word-line voltage boosting, access transistor body biasing, and an applied external magnetic field. Results from simulation using 45-nm bulk CMOS access transistor and 40-nm magnetic tunneling junction technology show that word-line voltage boosting can be the best failure mitigation technique. Bit-cells designed with word-line boosting for write has a bit-cell area reduced by > 75% at iso-failure probability, compared to bit-cells without any failure mitigation technique. When bit-cell failure probability is optimized instead, 5 Oe of applied external magnetic field assisted write reduces power consumption by 15% , compared to bit-cells designed without failure mitigation techniques.
ISSN:1063-8210
1557-9999
DOI:10.1109/TVLSI.2013.2239671