A new identification method for five species of oysters in genus Crassostrea from China based on high-resolution melting analysis
The high phenotypic plasticity in the shell of oysters presents a challenge during taxonomic and phylogenetie studies of these economically important bivalves. However, because DNA can exhibit marked differences among morphologically similar species, DNA barcoding offers a potential means for oyster...
Gespeichert in:
Veröffentlicht in: | Chinese journal of oceanology and limnology 2014-03, Vol.32 (2), p.419-425 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The high phenotypic plasticity in the shell of oysters presents a challenge during taxonomic and phylogenetie studies of these economically important bivalves. However, because DNA can exhibit marked differences among morphologically similar species, DNA barcoding offers a potential means for oyster identification. We analyzed the complete sequences of the cytochrome oxidase subunit I (COI) of five common Crassostrea species in China (including Hong Kong oyster C. hongkongensis, Jinjiang oyster C. ariakensis, Portuguese oyster C. angulata, Kumamoto oyster C. sikamea, and Pacific oyster C. gigas) and screened for distinct fragments. Using these distinct fragments on a high-resolution melting analysis platform, we developed an identification method that does not rely on species-specific PCR or fragment length polymorphism and is efficient, reliable, and easy to visualize. Using a single pair of primers (Oyster- COI-1), we were able to successfully distinguish among the five oyster species. This new method provides a simple and powerful tool for the identification of oyster species. |
---|---|
ISSN: | 0254-4059 2096-5508 1993-5005 2523-3521 |
DOI: | 10.1007/s00343-014-3124-4 |