SOMz: photometric redshift PDFs with self-organizing maps and random atlas
In this paper, we explore the applicability of the unsupervised machine learning technique of self-organizing maps (SOM) to estimate galaxy photometric redshift probability density functions (PDFs). This technique takes a spectroscopic training set, and maps the photometric attributes, but not the r...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2014-03, Vol.438 (4), p.3409-3421 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we explore the applicability of the unsupervised machine learning technique of self-organizing maps (SOM) to estimate galaxy photometric redshift probability density functions (PDFs). This technique takes a spectroscopic training set, and maps the photometric attributes, but not the redshifts, to a two-dimensional surface by using a process of competitive learning where neurons compete to more closely resemble the training data multidimensional space. The key feature of a SOM is that it retains the topology of the input set, revealing correlations between the attributes that are not easily identified. We test three different 2D topological mapping: rectangular, hexagonal and spherical, by using data from the Deep Extragalactic Evolutionary Probe 2 survey. We also explore different implementations and boundary conditions on the map and also introduce the idea of a random atlas, where a large number of different maps are created and their individual predictions are aggregated to produce a more robust photometric redshift PDF. We also introduced a new metric, the I-score, which efficiently incorporates different metrics, making it easier to compare different results (from different parameters or different photometric redshift codes). We find that by using a spherical topology mapping we obtain a better representation of the underlying multidimensional topology, which provides more accurate results that are comparable to other, state-of-the-art machine learning algorithms. Our results illustrate that unsupervised approaches have great potential for many astronomical problems, and in particular for the computation of photometric redshifts. |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/stt2456 |