Plant-virus interactions and the agro-ecological interface

As a result of human activities, an ever-increasing portion of Earth’s natural landscapes now lie adjacent to agricultural lands. This border between wild and agricultural communities represents an agro-ecological interface, which may be populated with crop plants, weeds of crop systems, and non-cro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of plant pathology 2014-03, Vol.138 (3), p.529-547
Hauptverfasser: Alexander, H. M, Mauck, K. E, Whitfield, A. E, Garrett, K. A, Malmstrom, C. M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As a result of human activities, an ever-increasing portion of Earth’s natural landscapes now lie adjacent to agricultural lands. This border between wild and agricultural communities represents an agro-ecological interface, which may be populated with crop plants, weeds of crop systems, and non-crop plants that vary from exotic to native in origin. Plant viruses are important components of the agro-ecological interface because of their ubiquity, dispersal by arthropod vectors, and ability to colonize both crop and wild species. Here we provide an overview of research on plant-virus dynamics across this interface and suggest three research priorities: (1) an increased effort to identify and describe plant virus diversity and distribution in its entirety across agricultural and ecological boundaries; (2) multi-scale studies of virus transmission to develop predictive power in estimating virus propagation across landscapes; and (3) quantitative evaluation of the influence of viruses on plant fitness and populations in environmental contexts beyond crop fields. We close by emphasizing that agro-ecological interfaces are dynamic, influenced by the human-mediated redistribution of plants, vectors, and viruses around the world, climate change, and the development of new crops. Consideration of virus interactions within these environmentally complex systems promises new insight into virus, plant, and vector dynamics from molecular mechanisms to ecological consequences.
ISSN:0929-1873
1573-8469
DOI:10.1007/s10658-013-0317-1