Singular value decomposition of a technology matrix
This paper is the first application of the singular value decomposition (SVD) in general equilibrium theory. Every technology matrix can be decomposed into three parts: a definition of composite commodities; a definition of composite factors; and a simple map of composite factor prices into composit...
Gespeichert in:
Veröffentlicht in: | International journal of economic theory 2014-03, Vol.10 (1), p.37-52 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is the first application of the singular value decomposition (SVD) in general equilibrium theory. Every technology matrix can be decomposed into three parts: a definition of composite commodities; a definition of composite factors; and a simple map of composite factor prices into composite goods prices. This technique gives an orthogonal decomposition of the price space into two complementary subspaces: vectors that generate the price cone; and a basis that describe the flats on the production possibility frontier. This decomposition can be used easily to compute Rybczynski effects. |
---|---|
ISSN: | 1742-7355 1742-7363 |
DOI: | 10.1111/ijet.12026 |