Effect of captopril and melatonin on fibrotic rebuilding of the aorta in 24 hour light-induced hypertension

Chronic continuous light exposure leads to melatonin deficiency along with complex neurohumoral activation resulting in hypertension development in rats. The aim of this study was to show, whether continuous light induces fibrotic rebuilding of the aorta and whether the treatment with melatonin or a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiological research 2013-01, Vol.62 Suppl 1, p.S135-S141
Hauptverfasser: Repová-Bednárová, K, Aziriová, S, Hrenák, J, Krajčírovičová, K, Adamcová, M, Paulis, L, Simko, F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chronic continuous light exposure leads to melatonin deficiency along with complex neurohumoral activation resulting in hypertension development in rats. The aim of this study was to show, whether continuous light induces fibrotic rebuilding of the aorta and whether the treatment with melatonin or angiotensin converting enzyme inhibitor captopril can prevent these potential alterations. In a six-week experiment, 3-month-old Wistar rats were divided into 4 groups (ten per group): controls, rats exposed to continuous light, exposed to continuous light plus treated with captopril (100 mg/kg/24 h) and exposed to continuous light plus treated with melatonin (10 mg/kg/24 h). Systolic blood pressure (SBP) and collagen type I and III in the media of thoracic aorta were measured. Continuous light induced hypertension and fibrotic rebuilding of the aorta in terms of enhancement of collagen I and III concentration in the aortic media. Both captopril and melatonin prevented SBP rise and reduced collagen III concentration in the aorta. However, only melatonin reduced collagen I and the sum of collagen I and III in the aortic tissue. We conclude that in continuous light-induced hypertension, administration of melatonin, along with SBP reduction, decreases collagen I and III concentration in the aorta. It is suggested that antifibrotic effect of melatonin may reduce the stiffness of the aorta and small arteries and beneficially influence the nature of the pulse wave and peripheral vascular resistance.
ISSN:0862-8408
1802-9973
DOI:10.33549/physiolres.932592