Influence of glucocorticoids, neuregulin-1[Beta], and sex on surfactant phospholipid secretion from type II cells

Glucocorticoids induce lung fibroblasts to produce fibroblast-pneumocyte factor, a peptide that stimulates type II cells to synthesize pulmonary surfactant. This effect is known to be more apparent in cells derived from female fetuses, a characteristic that has been attributed to sex-linked differen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Lung cellular and molecular physiology 2014-02, Vol.306 (3), p.L292
Hauptverfasser: King, George, Damas, Jolanta E, Cake, Max H, Berryman, David, Maker, Garth L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Glucocorticoids induce lung fibroblasts to produce fibroblast-pneumocyte factor, a peptide that stimulates type II cells to synthesize pulmonary surfactant. This effect is known to be more apparent in cells derived from female fetuses, a characteristic that has been attributed to sex-linked differences in the fibroblasts. In the current study, it has been shown that dexamethasone enhances both β-adrenergic receptor (β-AR) activity (1.3- to 1.6-fold increase) and (-)-isoproterenol-induced secretion of surfactant (1.8- to 1.9-fold increase) in type II cells. However, fibroblast-conditioned media (FCM), prepared in the presence of dexamethasone, generates a much greater response to (-)-isoproterenol (3.1- to 3.8-fold increase). Furthermore, each of these effects is more pronounced if both cell types are female-derived. It is hypothesized that the enhanced response to glucocorticoids is the result of a synergistic effect between the steroid and a component of FCM. Neuregulin-1β (NRG1β), which is elevated in FCM generated in the presence of dexamethasone, influences not only the rate of surfactant secretion and the β-AR activity in type II cells, but also enhances in both sexes the cellular response to (-)-isoproterenol. These results suggest that NRG1β might be more effective than glucocorticoids in treating prematurely born male infants, which are known to respond poorly to glucocorticoids. Given that glucocorticoids are known to induce higher levels of β-AR mRNA, the effect of NRG1β, alone and in combination with dexamethasone, on β-AR gene expression was measured using qRT-PCR. Whereas NRG1β had no effect alone, in combination with dexamethasone it produced up to a 4.2-fold elevation in the level of β-AR mRNA. [PUBLICATION ABSTRACT]
ISSN:1040-0605
1522-1504