Modeling and Controller Design of a Precision Hybrid Scanner for Application in Large Measurement-Range Atomic Force Microscopy

In this paper, we have developed a novel large measurement-range atomic force microscopy (AFM) system performing the tapping mode operation. This system consists of a compact/low-cost scanning probe-type sensing system ( z-scanner) and a hybrid xy-scanner. To achieve precision measurement through im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2014-07, Vol.61 (7), p.3704-3712
Hauptverfasser: Wu, Jim-Wei, Huang, Kuan-Chia, Chiang, Ming-Li, Chen, Mei-Yung, Fu, Li-Chen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we have developed a novel large measurement-range atomic force microscopy (AFM) system performing the tapping mode operation. This system consists of a compact/low-cost scanning probe-type sensing system ( z-scanner) and a hybrid xy-scanner. To achieve precision measurement through image scan of given samples, a thorough mathematical modeling is established first, and an advanced robust adaptive controller is then proposed, which can deal with unknown parameters, cross-talk effects, external disturbances, and unknown hysteresis phenomena. The salient properties of the resulting closed-loop AFM system includes long traveling range, high precision, and fast response after integrating two kinds of actuations. To demonstrate and qualify the scanning capability of the proposed system, systematic experiments have been conducted.
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2013.2279352