Bifurcations of Limit Cycles from a Quintic Hamiltonian System with a Heteroclinic Cycle

In this paper,we consider Li′enard systems of the form dx/dt=y,dy/dt=x+bx3-x5+ε(α+βx2+γx4)y,where b∈R,0〈|ε|〈〈1,(α,β,γ)∈D∈R3 and D is bounded.We prove that for |b|〉〉1(b〈0) the least upper bound of the number of isolated zeros of the related Abelian integrals I(h)=∮Γh(α+βx2+γx4)ydx is 2(counting the m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Sinica. English series 2014-03, Vol.30 (3), p.411-422
Hauptverfasser: Zhao, Li Qin, Li, De Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 422
container_issue 3
container_start_page 411
container_title Acta mathematica Sinica. English series
container_volume 30
creator Zhao, Li Qin
Li, De Ping
description In this paper,we consider Li′enard systems of the form dx/dt=y,dy/dt=x+bx3-x5+ε(α+βx2+γx4)y,where b∈R,0〈|ε|〈〈1,(α,β,γ)∈D∈R3 and D is bounded.We prove that for |b|〉〉1(b〈0) the least upper bound of the number of isolated zeros of the related Abelian integrals I(h)=∮Γh(α+βx2+γx4)ydx is 2(counting the multiplicity) and this upper bound is a sharp one.
doi_str_mv 10.1007/s10114-014-2615-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1493344471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>48920391</cqvip_id><sourcerecordid>3199629121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-37261c249e1a7922f6b1e5c0c6bf3a01630b5ce4908b8ce38dd274c6323191253</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWKsP4C7iejQ3yfxkqUWtUBBRwV2YSTNtykzSJinStzd1irhyccldnHO_8CF0CeQGCClvAxAAnpE0tIA8q47QCDgTWVlAeXzYqxyKU3QWwoqQPBekGKHPe9NuvaqjcTZg1-KZ6U3Ek53qdMCtdz2u8evW2GgUnta96aKzprb4bRei7vGXictETHXU3qnO2IT9yOfopK27oC8O7xh9PD68T6bZ7OXpeXI3yxTjNGasTN9VlAsNdSkobYsGdK6IKpqW1QQKRppcaS5I1VRKs2o-pyVXBaMMBNCcjdH1cHft3WarQ5Qrt_U2RUrggjHOeQmJgoFS3oXgdSvX3vS130kgcl-gHAqUqUC5L1BWyaGDExJrF9r_ufyPdHUIWjq72CTvN4lXghImgH0D3ZV9CQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1493344471</pqid></control><display><type>article</type><title>Bifurcations of Limit Cycles from a Quintic Hamiltonian System with a Heteroclinic Cycle</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Zhao, Li Qin ; Li, De Ping</creator><creatorcontrib>Zhao, Li Qin ; Li, De Ping</creatorcontrib><description>In this paper,we consider Li′enard systems of the form dx/dt=y,dy/dt=x+bx3-x5+ε(α+βx2+γx4)y,where b∈R,0〈|ε|〈〈1,(α,β,γ)∈D∈R3 and D is bounded.We prove that for |b|〉〉1(b〈0) the least upper bound of the number of isolated zeros of the related Abelian integrals I(h)=∮Γh(α+βx2+γx4)ydx is 2(counting the multiplicity) and this upper bound is a sharp one.</description><identifier>ISSN: 1439-8516</identifier><identifier>EISSN: 1439-7617</identifier><identifier>DOI: 10.1007/s10114-014-2615-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Abel积分 ; Mathematics ; Mathematics and Statistics ; Polynomials ; 哈密顿系统 ; 多样性 ; 异宿环 ; 最小上界 ; 有界 ; 极限环</subject><ispartof>Acta mathematica Sinica. English series, 2014-03, Vol.30 (3), p.411-422</ispartof><rights>Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-37261c249e1a7922f6b1e5c0c6bf3a01630b5ce4908b8ce38dd274c6323191253</citedby><cites>FETCH-LOGICAL-c342t-37261c249e1a7922f6b1e5c0c6bf3a01630b5ce4908b8ce38dd274c6323191253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85800X/85800X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10114-014-2615-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10114-014-2615-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhao, Li Qin</creatorcontrib><creatorcontrib>Li, De Ping</creatorcontrib><title>Bifurcations of Limit Cycles from a Quintic Hamiltonian System with a Heteroclinic Cycle</title><title>Acta mathematica Sinica. English series</title><addtitle>Acta. Math. Sin.-English Ser</addtitle><addtitle>Acta Mathematica Sinica</addtitle><description>In this paper,we consider Li′enard systems of the form dx/dt=y,dy/dt=x+bx3-x5+ε(α+βx2+γx4)y,where b∈R,0〈|ε|〈〈1,(α,β,γ)∈D∈R3 and D is bounded.We prove that for |b|〉〉1(b〈0) the least upper bound of the number of isolated zeros of the related Abelian integrals I(h)=∮Γh(α+βx2+γx4)ydx is 2(counting the multiplicity) and this upper bound is a sharp one.</description><subject>Abel积分</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polynomials</subject><subject>哈密顿系统</subject><subject>多样性</subject><subject>异宿环</subject><subject>最小上界</subject><subject>有界</subject><subject>极限环</subject><issn>1439-8516</issn><issn>1439-7617</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kM1KAzEURoMoWKsP4C7iejQ3yfxkqUWtUBBRwV2YSTNtykzSJinStzd1irhyccldnHO_8CF0CeQGCClvAxAAnpE0tIA8q47QCDgTWVlAeXzYqxyKU3QWwoqQPBekGKHPe9NuvaqjcTZg1-KZ6U3Ek53qdMCtdz2u8evW2GgUnta96aKzprb4bRei7vGXictETHXU3qnO2IT9yOfopK27oC8O7xh9PD68T6bZ7OXpeXI3yxTjNGasTN9VlAsNdSkobYsGdK6IKpqW1QQKRppcaS5I1VRKs2o-pyVXBaMMBNCcjdH1cHft3WarQ5Qrt_U2RUrggjHOeQmJgoFS3oXgdSvX3vS130kgcl-gHAqUqUC5L1BWyaGDExJrF9r_ufyPdHUIWjq72CTvN4lXghImgH0D3ZV9CQ</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Zhao, Li Qin</creator><creator>Li, De Ping</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20140301</creationdate><title>Bifurcations of Limit Cycles from a Quintic Hamiltonian System with a Heteroclinic Cycle</title><author>Zhao, Li Qin ; Li, De Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-37261c249e1a7922f6b1e5c0c6bf3a01630b5ce4908b8ce38dd274c6323191253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Abel积分</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polynomials</topic><topic>哈密顿系统</topic><topic>多样性</topic><topic>异宿环</topic><topic>最小上界</topic><topic>有界</topic><topic>极限环</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Li Qin</creatorcontrib><creatorcontrib>Li, De Ping</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta mathematica Sinica. English series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Li Qin</au><au>Li, De Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bifurcations of Limit Cycles from a Quintic Hamiltonian System with a Heteroclinic Cycle</atitle><jtitle>Acta mathematica Sinica. English series</jtitle><stitle>Acta. Math. Sin.-English Ser</stitle><addtitle>Acta Mathematica Sinica</addtitle><date>2014-03-01</date><risdate>2014</risdate><volume>30</volume><issue>3</issue><spage>411</spage><epage>422</epage><pages>411-422</pages><issn>1439-8516</issn><eissn>1439-7617</eissn><abstract>In this paper,we consider Li′enard systems of the form dx/dt=y,dy/dt=x+bx3-x5+ε(α+βx2+γx4)y,where b∈R,0〈|ε|〈〈1,(α,β,γ)∈D∈R3 and D is bounded.We prove that for |b|〉〉1(b〈0) the least upper bound of the number of isolated zeros of the related Abelian integrals I(h)=∮Γh(α+βx2+γx4)ydx is 2(counting the multiplicity) and this upper bound is a sharp one.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10114-014-2615-8</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1439-8516
ispartof Acta mathematica Sinica. English series, 2014-03, Vol.30 (3), p.411-422
issn 1439-8516
1439-7617
language eng
recordid cdi_proquest_journals_1493344471
source SpringerLink Journals; Alma/SFX Local Collection
subjects Abel积分
Mathematics
Mathematics and Statistics
Polynomials
哈密顿系统
多样性
异宿环
最小上界
有界
极限环
title Bifurcations of Limit Cycles from a Quintic Hamiltonian System with a Heteroclinic Cycle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T02%3A05%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bifurcations%20of%20Limit%20Cycles%20from%20a%20Quintic%20Hamiltonian%20System%20with%20a%20Heteroclinic%20Cycle&rft.jtitle=Acta%20mathematica%20Sinica.%20English%20series&rft.au=Zhao,%20Li%20Qin&rft.date=2014-03-01&rft.volume=30&rft.issue=3&rft.spage=411&rft.epage=422&rft.pages=411-422&rft.issn=1439-8516&rft.eissn=1439-7617&rft_id=info:doi/10.1007/s10114-014-2615-8&rft_dat=%3Cproquest_cross%3E3199629121%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1493344471&rft_id=info:pmid/&rft_cqvip_id=48920391&rfr_iscdi=true