Bifurcations of Limit Cycles from a Quintic Hamiltonian System with a Heteroclinic Cycle
In this paper,we consider Li′enard systems of the form dx/dt=y,dy/dt=x+bx3-x5+ε(α+βx2+γx4)y,where b∈R,0〈|ε|〈〈1,(α,β,γ)∈D∈R3 and D is bounded.We prove that for |b|〉〉1(b〈0) the least upper bound of the number of isolated zeros of the related Abelian integrals I(h)=∮Γh(α+βx2+γx4)ydx is 2(counting the m...
Gespeichert in:
Veröffentlicht in: | Acta mathematica Sinica. English series 2014-03, Vol.30 (3), p.411-422 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper,we consider Li′enard systems of the form dx/dt=y,dy/dt=x+bx3-x5+ε(α+βx2+γx4)y,where b∈R,0〈|ε|〈〈1,(α,β,γ)∈D∈R3 and D is bounded.We prove that for |b|〉〉1(b〈0) the least upper bound of the number of isolated zeros of the related Abelian integrals I(h)=∮Γh(α+βx2+γx4)ydx is 2(counting the multiplicity) and this upper bound is a sharp one. |
---|---|
ISSN: | 1439-8516 1439-7617 |
DOI: | 10.1007/s10114-014-2615-8 |