Bifurcations of Limit Cycles from a Quintic Hamiltonian System with a Heteroclinic Cycle

In this paper,we consider Li′enard systems of the form dx/dt=y,dy/dt=x+bx3-x5+ε(α+βx2+γx4)y,where b∈R,0〈|ε|〈〈1,(α,β,γ)∈D∈R3 and D is bounded.We prove that for |b|〉〉1(b〈0) the least upper bound of the number of isolated zeros of the related Abelian integrals I(h)=∮Γh(α+βx2+γx4)ydx is 2(counting the m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Sinica. English series 2014-03, Vol.30 (3), p.411-422
Hauptverfasser: Zhao, Li Qin, Li, De Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper,we consider Li′enard systems of the form dx/dt=y,dy/dt=x+bx3-x5+ε(α+βx2+γx4)y,where b∈R,0〈|ε|〈〈1,(α,β,γ)∈D∈R3 and D is bounded.We prove that for |b|〉〉1(b〈0) the least upper bound of the number of isolated zeros of the related Abelian integrals I(h)=∮Γh(α+βx2+γx4)ydx is 2(counting the multiplicity) and this upper bound is a sharp one.
ISSN:1439-8516
1439-7617
DOI:10.1007/s10114-014-2615-8