Predicted high-performing piglets exhibit more and larger skeletal muscle fibers1

Postnatal (muscle) growth potential in pigs depends on the total number and hypertrophy of myofibers in skeletal muscle tissue. In a previous study an algorithm was developed to predict piglet BW at the end of the nursery period (10 wk of age) on the basis of BW at birth, at weaning, and at 6 wk of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of animal science 2013-12, Vol.91 (12), p.5589-5598
Hauptverfasser: Paredes, S. P., Kalbe, C., Jansman, A. J. M., Verstegen, M. W. A., van Hees, H. M. J., Lösel, D., Gerrits, W. J. J., Rehfeldt, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Postnatal (muscle) growth potential in pigs depends on the total number and hypertrophy of myofibers in skeletal muscle tissue. In a previous study an algorithm was developed to predict piglet BW at the end of the nursery period (10 wk of age) on the basis of BW at birth, at weaning, and at 6 wk of age. The objective of this study was to determine whether the differences in growth performance between poor (PP) and high (HP) performing piglets could be the result of different skeletal muscle properties. Therefore, from a total of 368 piglets (offspring from Hypor sows bred to TOPIGS sires) 2 groups with a divergent growth performance were selected at 6 wk of age: HP (n = 20, predicted BW at 10 wk of age 26.8-30.9 kg) and PP (n = 20, predicted BW at 10 wk of age 16.0-22.9 kg). Piglets were euthanized at 10 wk of age, and samples of the semitendinosus muscle (STN) were collected for histochemistry and gene expression analysis using quantitative PCR (qPCR). At 10 wk of age, realized BW did not differ from predicted BW in either group (P > 0.880). The HP piglets exhibited greater ADG and ADFI from 6 to 10 wk and greater BW at birth and 6 and 10 wk of age (P ≤ 0.002) compared with the PP piglets, whereas G:F ratio was similar (P = 0.417). Superior growth performance of HP piglets was associated with a 1.27-fold higher IGF1 plasma concentration at 10 wk compared with the PP piglets (P = 0.044). The greater weight and muscle cross-sectional area of STN in HP piglets was due to a 1.20-fold increase in total muscle fiber number (TFN; P = 0.009) and 1.34-fold increase in fiber cross-sectional area (FCSA; P = 0.004) compared with the PP piglets. The number of myonuclei per red and intermediate fiber was greater in HP piglets (P ≤ 0.097), but the nucleus-to-cytoplasm ratio was unaffected by the performance group (P = 0.861). The mRNA expression of proliferating cell nuclear antigen (PCNA), paired box 7 (PAX7), myogenic factor 5 (MYF5), and myogenic differentiation factor (MYOD) did not differ between groups (P ≥ 0.327). However, IGF2-specific mRNA expression was numerically higher in the HP piglets (P = 0.101). The greater myofiber number, the higher degree of myofiber hypertrophy, and the increased muscular mRNA expression of IGF2 indicate that HP piglets exhibit a greater capacity for lean accretion and may grow faster until market weight. In summary, pigs that were selected for predicted high BW at 10 wk of age using a complex selection model had a superior muscular
ISSN:0021-8812
1525-3163
DOI:10.2527/jas.2013-6908