Prednisolone induces osteoporosis-like phenotype in regenerating zebrafish scales

Summary We demonstrate that glucocorticoids induce an osteoporotic phenotype in regenerating scales of zebrafish. Exposure to prednisolone results in altered mineral content, enhanced matrix breakdown, and an osteoporotic gene-expression profile in osteoblasts and osteoclasts. This highlights that t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Osteoporosis international 2014-02, Vol.25 (2), p.567-578
Hauptverfasser: de Vrieze, E., van Kessel, M. A. H. J., Peters, H. M., Spanings, F. A. T., Flik, G., Metz, J. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary We demonstrate that glucocorticoids induce an osteoporotic phenotype in regenerating scales of zebrafish. Exposure to prednisolone results in altered mineral content, enhanced matrix breakdown, and an osteoporotic gene-expression profile in osteoblasts and osteoclasts. This highlights that the zebrafish scale provides a powerful tool for preclinical osteoporosis research. Introduction This study aims to evaluate whether glucocorticoid (prednisolone) treatment of zebrafish induces an osteoporotic phenotype in regenerating scales. Scales, a readily accessible dermal bone tissue, may provide a tool to study direct osteogenesis and its disturbance by glucocorticoids. Methods In adult zebrafish, treated with 25 μM prednisolone phosphate via the water, scales were removed and allowed to regenerate. During regeneration scale morphology and the molar calcium/phosphorus ratio in scales were assessed and osteoblast and osteoclast activities were monitored by time profiling of cell-specific genes; mineralization was visualized by Von Kossa staining, osteoclast activity by tartrate-resistant acid phosphatase histochemistry. Results Prednisolone (compared to controls) enhances osteoclast activity and matrix resorption and slows down the build up of the calcium/phosphorus molar ratio indicative of altered crystal maturation. Prednisolone treatment further impedes regeneration through a shift in the time profiles of osteoblast and osteoclast genes that commensurates with an osteoporosis-like imbalance in bone formation. Conclusions A glucocorticoid-induced osteoporosis phenotype as seen in mammals was induced in regenerating scalar bone of zebrafish treated with prednisolone. An unsurpassed convenience and low cost then make the zebrafish scale a superior model for preclinical studies in osteoporosis research.
ISSN:0937-941X
1433-2965
DOI:10.1007/s00198-013-2441-3