Strong force networks in granular mixtures
Using the results of 3D discrete element method simulations we study the force transmission through binary mixtures of sand and silt sized spheres under one-dimensional compression. Three types of contact are categorized depending on the size of the two spheres in contact. The contributions of each...
Gespeichert in:
Veröffentlicht in: | Granular matter 2014-02, Vol.16 (1), p.69-78 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using the results of 3D discrete element method simulations we study the force transmission through binary mixtures of sand and silt sized spheres under one-dimensional compression. Three types of contact are categorized depending on the size of the two spheres in contact. The contributions of each contact type to the deviator stress are dependent on the proportion of silt sized spheres. We demonstrate that the magnitude of the deviator stress is solely due to the normal and tangential forces at contacts transmitting normal forces greater than a characteristic normal force, which is generally slightly greater than the average normal force. The maximum packing efficiency was obtained with the mixture of 30 % silt sized spheres and this mixture corresponds to a transition point when there are enough silt sized particles to start to separate the sand sized particles from each other and establish contacts between silt sized spheres that contribute to the deviator stress. |
---|---|
ISSN: | 1434-5021 1434-7636 |
DOI: | 10.1007/s10035-013-0455-3 |