PI3K signaling mediates diverse regulation of ATF4 expression for the survival of HK-2 cells exposed to cadmium
Cadmium exposure causes endoplasmic reticulum (ER) stress and accumulation of activating transcription factor 4 (ATF4), an ER stress marker. To elucidate the role of phosphatidylinositol-3-kinase (PI3K) signaling in this process, we examined the effects of PI3K signaling on cadmium chloride (CdCl 2...
Gespeichert in:
Veröffentlicht in: | Archives of toxicology 2014-02, Vol.88 (2), p.403-414 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 414 |
---|---|
container_issue | 2 |
container_start_page | 403 |
container_title | Archives of toxicology |
container_volume | 88 |
creator | Fujiki, Kota Inamura, Hisako Matsuoka, Masato |
description | Cadmium exposure causes endoplasmic reticulum (ER) stress and accumulation of activating transcription factor 4 (ATF4), an ER stress marker. To elucidate the role of phosphatidylinositol-3-kinase (PI3K) signaling in this process, we examined the effects of PI3K signaling on cadmium chloride (CdCl
2
) exposure-induced ATF4 expression in HK-2 human renal proximal tubular cells. ATF4 knockdown by siRNA enhanced CdCl
2
-induced cellular damage, indicating a cytoprotective function of ATF4. Treatment with LY294002, a PI3K inhibitor, suppressed CdCl
2
-induced ATF4 expression and Akt phosphorylation at Thr308 with little effect on phosphorylation of eukaryotic translation initiation factor 2 subunit
α
at Ser51. Activation of PI3K signaling with epidermal growth factor treatment enhanced CdCl
2
-induced Akt phosphorylation and ATF4 expression. Suppression of CdCl
2
-induced ATF4 expression by LY294002 treatment was markedly blocked by cycloheximide, a translation inhibitor, but not by MG-132, a proteasome inhibitor, or actinomycin D, a transcription inhibitor. CdCl
2
exposure also induced phosphorylation of mammalian target of rapamycin (mTOR) at Ser2448, glycogen synthase kinase-3α (GSK-3α) at Ser21, GSK-3β at Ser9, and 90 kDa ribosomal S6 kinase 2 (RSK2) at Ser227 in HK-2 cells. Treatment with rapamycin, an mTOR inhibitor, MK2206, an Akt inhibitor, and BI-D1870, a RSK inhibitor, partially suppressed CdCl
2
-induced ATF4 expression. Conversely, SB216763, a GSK-3 inhibitor, markedly inhibited the potency of LY294002 to suppress CdCl
2
-induced ATF4 expression. These results suggest that PI3K signaling diversely regulates the expression of ATF4 in a translation-dependent manner via downstream molecules, including mTOR, GSK-3α/β, and RSK2, and plays a role in protecting HK-2 cells from cadmium-induced damage. |
doi_str_mv | 10.1007/s00204-013-1129-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1492440167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3194655651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-9de34b8ac2c54db0f7e18752c5269b5f1065a14ede2106920b4d9b2853060403</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EglL4ADbIEmvD-JHXEiGgFUiw6N5ykkkJSuviSSr69zgqIDasPPacuSMfxi4kXEuA7IYAFBgBUgspVSF2B2wijVYCMp0fsgloAyLJUnnCToneAaTKC33MTpSBJEsyOWH-da6fOLXLteva9ZKvsG5dj8TrdouBkAdcDp3rW7_mvuG3iwfD8XMTkGh8anzg_RtyGsK23bpuZGZPQvEKu45G0hPWvPe8cvWqHVZn7KhxHeH59zlli4f7xd1MPL88zu9un0VldN6LokZtytxVqkpMXUKTocyzJN5UWpRJIyFNnDRYo4ploaA0dVGqPNGQggE9ZVf72E3wHwNSb9_9EOIfyUpTKGNAplmk5J6qgicK2NhNaFcu7KwEOxq2e8M2GrajYbuLM5ffyUMZZf1O_CiNgNoDFFvrJYY_q_9N_QI9ZIWd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1492440167</pqid></control><display><type>article</type><title>PI3K signaling mediates diverse regulation of ATF4 expression for the survival of HK-2 cells exposed to cadmium</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Fujiki, Kota ; Inamura, Hisako ; Matsuoka, Masato</creator><creatorcontrib>Fujiki, Kota ; Inamura, Hisako ; Matsuoka, Masato</creatorcontrib><description>Cadmium exposure causes endoplasmic reticulum (ER) stress and accumulation of activating transcription factor 4 (ATF4), an ER stress marker. To elucidate the role of phosphatidylinositol-3-kinase (PI3K) signaling in this process, we examined the effects of PI3K signaling on cadmium chloride (CdCl
2
) exposure-induced ATF4 expression in HK-2 human renal proximal tubular cells. ATF4 knockdown by siRNA enhanced CdCl
2
-induced cellular damage, indicating a cytoprotective function of ATF4. Treatment with LY294002, a PI3K inhibitor, suppressed CdCl
2
-induced ATF4 expression and Akt phosphorylation at Thr308 with little effect on phosphorylation of eukaryotic translation initiation factor 2 subunit
α
at Ser51. Activation of PI3K signaling with epidermal growth factor treatment enhanced CdCl
2
-induced Akt phosphorylation and ATF4 expression. Suppression of CdCl
2
-induced ATF4 expression by LY294002 treatment was markedly blocked by cycloheximide, a translation inhibitor, but not by MG-132, a proteasome inhibitor, or actinomycin D, a transcription inhibitor. CdCl
2
exposure also induced phosphorylation of mammalian target of rapamycin (mTOR) at Ser2448, glycogen synthase kinase-3α (GSK-3α) at Ser21, GSK-3β at Ser9, and 90 kDa ribosomal S6 kinase 2 (RSK2) at Ser227 in HK-2 cells. Treatment with rapamycin, an mTOR inhibitor, MK2206, an Akt inhibitor, and BI-D1870, a RSK inhibitor, partially suppressed CdCl
2
-induced ATF4 expression. Conversely, SB216763, a GSK-3 inhibitor, markedly inhibited the potency of LY294002 to suppress CdCl
2
-induced ATF4 expression. These results suggest that PI3K signaling diversely regulates the expression of ATF4 in a translation-dependent manner via downstream molecules, including mTOR, GSK-3α/β, and RSK2, and plays a role in protecting HK-2 cells from cadmium-induced damage.</description><identifier>ISSN: 0340-5761</identifier><identifier>EISSN: 1432-0738</identifier><identifier>DOI: 10.1007/s00204-013-1129-y</identifier><identifier>PMID: 24057571</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Activating Transcription Factor 4 - genetics ; Activating Transcription Factor 4 - metabolism ; Biodiversity ; Biomedical and Life Sciences ; Biomedicine ; Cadmium ; Cadmium - toxicity ; Cadmium Chloride - toxicity ; Cell Line - drug effects ; Cells ; Chromones - pharmacology ; Environmental Health ; Enzyme Inhibitors - pharmacology ; Gene expression ; Gene Knockdown Techniques ; Glycogen Synthase Kinase 3 - metabolism ; Humans ; Kidney Tubules, Proximal - cytology ; Kidney Tubules, Proximal - drug effects ; Kidney Tubules, Proximal - metabolism ; Molecular Toxicology ; Morpholines - pharmacology ; Occupational Medicine/Industrial Medicine ; Pharmacology/Toxicology ; Phosphatidylinositol 3-Kinases - antagonists & inhibitors ; Phosphatidylinositol 3-Kinases - metabolism ; Proto-Oncogene Proteins c-akt - metabolism ; Ribosomal Protein S6 Kinases, 90-kDa - metabolism ; Signal Transduction - drug effects ; TOR Serine-Threonine Kinases - metabolism</subject><ispartof>Archives of toxicology, 2014-02, Vol.88 (2), p.403-414</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-9de34b8ac2c54db0f7e18752c5269b5f1065a14ede2106920b4d9b2853060403</citedby><cites>FETCH-LOGICAL-c438t-9de34b8ac2c54db0f7e18752c5269b5f1065a14ede2106920b4d9b2853060403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00204-013-1129-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00204-013-1129-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24057571$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fujiki, Kota</creatorcontrib><creatorcontrib>Inamura, Hisako</creatorcontrib><creatorcontrib>Matsuoka, Masato</creatorcontrib><title>PI3K signaling mediates diverse regulation of ATF4 expression for the survival of HK-2 cells exposed to cadmium</title><title>Archives of toxicology</title><addtitle>Arch Toxicol</addtitle><addtitle>Arch Toxicol</addtitle><description>Cadmium exposure causes endoplasmic reticulum (ER) stress and accumulation of activating transcription factor 4 (ATF4), an ER stress marker. To elucidate the role of phosphatidylinositol-3-kinase (PI3K) signaling in this process, we examined the effects of PI3K signaling on cadmium chloride (CdCl
2
) exposure-induced ATF4 expression in HK-2 human renal proximal tubular cells. ATF4 knockdown by siRNA enhanced CdCl
2
-induced cellular damage, indicating a cytoprotective function of ATF4. Treatment with LY294002, a PI3K inhibitor, suppressed CdCl
2
-induced ATF4 expression and Akt phosphorylation at Thr308 with little effect on phosphorylation of eukaryotic translation initiation factor 2 subunit
α
at Ser51. Activation of PI3K signaling with epidermal growth factor treatment enhanced CdCl
2
-induced Akt phosphorylation and ATF4 expression. Suppression of CdCl
2
-induced ATF4 expression by LY294002 treatment was markedly blocked by cycloheximide, a translation inhibitor, but not by MG-132, a proteasome inhibitor, or actinomycin D, a transcription inhibitor. CdCl
2
exposure also induced phosphorylation of mammalian target of rapamycin (mTOR) at Ser2448, glycogen synthase kinase-3α (GSK-3α) at Ser21, GSK-3β at Ser9, and 90 kDa ribosomal S6 kinase 2 (RSK2) at Ser227 in HK-2 cells. Treatment with rapamycin, an mTOR inhibitor, MK2206, an Akt inhibitor, and BI-D1870, a RSK inhibitor, partially suppressed CdCl
2
-induced ATF4 expression. Conversely, SB216763, a GSK-3 inhibitor, markedly inhibited the potency of LY294002 to suppress CdCl
2
-induced ATF4 expression. These results suggest that PI3K signaling diversely regulates the expression of ATF4 in a translation-dependent manner via downstream molecules, including mTOR, GSK-3α/β, and RSK2, and plays a role in protecting HK-2 cells from cadmium-induced damage.</description><subject>Activating Transcription Factor 4 - genetics</subject><subject>Activating Transcription Factor 4 - metabolism</subject><subject>Biodiversity</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cadmium</subject><subject>Cadmium - toxicity</subject><subject>Cadmium Chloride - toxicity</subject><subject>Cell Line - drug effects</subject><subject>Cells</subject><subject>Chromones - pharmacology</subject><subject>Environmental Health</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Gene expression</subject><subject>Gene Knockdown Techniques</subject><subject>Glycogen Synthase Kinase 3 - metabolism</subject><subject>Humans</subject><subject>Kidney Tubules, Proximal - cytology</subject><subject>Kidney Tubules, Proximal - drug effects</subject><subject>Kidney Tubules, Proximal - metabolism</subject><subject>Molecular Toxicology</subject><subject>Morpholines - pharmacology</subject><subject>Occupational Medicine/Industrial Medicine</subject><subject>Pharmacology/Toxicology</subject><subject>Phosphatidylinositol 3-Kinases - antagonists & inhibitors</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Ribosomal Protein S6 Kinases, 90-kDa - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><issn>0340-5761</issn><issn>1432-0738</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kMtOwzAQRS0EglL4ADbIEmvD-JHXEiGgFUiw6N5ykkkJSuviSSr69zgqIDasPPacuSMfxi4kXEuA7IYAFBgBUgspVSF2B2wijVYCMp0fsgloAyLJUnnCToneAaTKC33MTpSBJEsyOWH-da6fOLXLteva9ZKvsG5dj8TrdouBkAdcDp3rW7_mvuG3iwfD8XMTkGh8anzg_RtyGsK23bpuZGZPQvEKu45G0hPWvPe8cvWqHVZn7KhxHeH59zlli4f7xd1MPL88zu9un0VldN6LokZtytxVqkpMXUKTocyzJN5UWpRJIyFNnDRYo4ploaA0dVGqPNGQggE9ZVf72E3wHwNSb9_9EOIfyUpTKGNAplmk5J6qgicK2NhNaFcu7KwEOxq2e8M2GrajYbuLM5ffyUMZZf1O_CiNgNoDFFvrJYY_q_9N_QI9ZIWd</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Fujiki, Kota</creator><creator>Inamura, Hisako</creator><creator>Matsuoka, Masato</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T2</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20140201</creationdate><title>PI3K signaling mediates diverse regulation of ATF4 expression for the survival of HK-2 cells exposed to cadmium</title><author>Fujiki, Kota ; Inamura, Hisako ; Matsuoka, Masato</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-9de34b8ac2c54db0f7e18752c5269b5f1065a14ede2106920b4d9b2853060403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Activating Transcription Factor 4 - genetics</topic><topic>Activating Transcription Factor 4 - metabolism</topic><topic>Biodiversity</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cadmium</topic><topic>Cadmium - toxicity</topic><topic>Cadmium Chloride - toxicity</topic><topic>Cell Line - drug effects</topic><topic>Cells</topic><topic>Chromones - pharmacology</topic><topic>Environmental Health</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Gene expression</topic><topic>Gene Knockdown Techniques</topic><topic>Glycogen Synthase Kinase 3 - metabolism</topic><topic>Humans</topic><topic>Kidney Tubules, Proximal - cytology</topic><topic>Kidney Tubules, Proximal - drug effects</topic><topic>Kidney Tubules, Proximal - metabolism</topic><topic>Molecular Toxicology</topic><topic>Morpholines - pharmacology</topic><topic>Occupational Medicine/Industrial Medicine</topic><topic>Pharmacology/Toxicology</topic><topic>Phosphatidylinositol 3-Kinases - antagonists & inhibitors</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Ribosomal Protein S6 Kinases, 90-kDa - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fujiki, Kota</creatorcontrib><creatorcontrib>Inamura, Hisako</creatorcontrib><creatorcontrib>Matsuoka, Masato</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Archives of toxicology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fujiki, Kota</au><au>Inamura, Hisako</au><au>Matsuoka, Masato</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PI3K signaling mediates diverse regulation of ATF4 expression for the survival of HK-2 cells exposed to cadmium</atitle><jtitle>Archives of toxicology</jtitle><stitle>Arch Toxicol</stitle><addtitle>Arch Toxicol</addtitle><date>2014-02-01</date><risdate>2014</risdate><volume>88</volume><issue>2</issue><spage>403</spage><epage>414</epage><pages>403-414</pages><issn>0340-5761</issn><eissn>1432-0738</eissn><abstract>Cadmium exposure causes endoplasmic reticulum (ER) stress and accumulation of activating transcription factor 4 (ATF4), an ER stress marker. To elucidate the role of phosphatidylinositol-3-kinase (PI3K) signaling in this process, we examined the effects of PI3K signaling on cadmium chloride (CdCl
2
) exposure-induced ATF4 expression in HK-2 human renal proximal tubular cells. ATF4 knockdown by siRNA enhanced CdCl
2
-induced cellular damage, indicating a cytoprotective function of ATF4. Treatment with LY294002, a PI3K inhibitor, suppressed CdCl
2
-induced ATF4 expression and Akt phosphorylation at Thr308 with little effect on phosphorylation of eukaryotic translation initiation factor 2 subunit
α
at Ser51. Activation of PI3K signaling with epidermal growth factor treatment enhanced CdCl
2
-induced Akt phosphorylation and ATF4 expression. Suppression of CdCl
2
-induced ATF4 expression by LY294002 treatment was markedly blocked by cycloheximide, a translation inhibitor, but not by MG-132, a proteasome inhibitor, or actinomycin D, a transcription inhibitor. CdCl
2
exposure also induced phosphorylation of mammalian target of rapamycin (mTOR) at Ser2448, glycogen synthase kinase-3α (GSK-3α) at Ser21, GSK-3β at Ser9, and 90 kDa ribosomal S6 kinase 2 (RSK2) at Ser227 in HK-2 cells. Treatment with rapamycin, an mTOR inhibitor, MK2206, an Akt inhibitor, and BI-D1870, a RSK inhibitor, partially suppressed CdCl
2
-induced ATF4 expression. Conversely, SB216763, a GSK-3 inhibitor, markedly inhibited the potency of LY294002 to suppress CdCl
2
-induced ATF4 expression. These results suggest that PI3K signaling diversely regulates the expression of ATF4 in a translation-dependent manner via downstream molecules, including mTOR, GSK-3α/β, and RSK2, and plays a role in protecting HK-2 cells from cadmium-induced damage.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>24057571</pmid><doi>10.1007/s00204-013-1129-y</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0340-5761 |
ispartof | Archives of toxicology, 2014-02, Vol.88 (2), p.403-414 |
issn | 0340-5761 1432-0738 |
language | eng |
recordid | cdi_proquest_journals_1492440167 |
source | MEDLINE; SpringerLink Journals |
subjects | Activating Transcription Factor 4 - genetics Activating Transcription Factor 4 - metabolism Biodiversity Biomedical and Life Sciences Biomedicine Cadmium Cadmium - toxicity Cadmium Chloride - toxicity Cell Line - drug effects Cells Chromones - pharmacology Environmental Health Enzyme Inhibitors - pharmacology Gene expression Gene Knockdown Techniques Glycogen Synthase Kinase 3 - metabolism Humans Kidney Tubules, Proximal - cytology Kidney Tubules, Proximal - drug effects Kidney Tubules, Proximal - metabolism Molecular Toxicology Morpholines - pharmacology Occupational Medicine/Industrial Medicine Pharmacology/Toxicology Phosphatidylinositol 3-Kinases - antagonists & inhibitors Phosphatidylinositol 3-Kinases - metabolism Proto-Oncogene Proteins c-akt - metabolism Ribosomal Protein S6 Kinases, 90-kDa - metabolism Signal Transduction - drug effects TOR Serine-Threonine Kinases - metabolism |
title | PI3K signaling mediates diverse regulation of ATF4 expression for the survival of HK-2 cells exposed to cadmium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T09%3A03%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PI3K%20signaling%20mediates%20diverse%20regulation%20of%20ATF4%20expression%20for%20the%20survival%20of%20HK-2%20cells%20exposed%20to%20cadmium&rft.jtitle=Archives%20of%20toxicology&rft.au=Fujiki,%20Kota&rft.date=2014-02-01&rft.volume=88&rft.issue=2&rft.spage=403&rft.epage=414&rft.pages=403-414&rft.issn=0340-5761&rft.eissn=1432-0738&rft_id=info:doi/10.1007/s00204-013-1129-y&rft_dat=%3Cproquest_cross%3E3194655651%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1492440167&rft_id=info:pmid/24057571&rfr_iscdi=true |