PI3K signaling mediates diverse regulation of ATF4 expression for the survival of HK-2 cells exposed to cadmium

Cadmium exposure causes endoplasmic reticulum (ER) stress and accumulation of activating transcription factor 4 (ATF4), an ER stress marker. To elucidate the role of phosphatidylinositol-3-kinase (PI3K) signaling in this process, we examined the effects of PI3K signaling on cadmium chloride (CdCl 2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of toxicology 2014-02, Vol.88 (2), p.403-414
Hauptverfasser: Fujiki, Kota, Inamura, Hisako, Matsuoka, Masato
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cadmium exposure causes endoplasmic reticulum (ER) stress and accumulation of activating transcription factor 4 (ATF4), an ER stress marker. To elucidate the role of phosphatidylinositol-3-kinase (PI3K) signaling in this process, we examined the effects of PI3K signaling on cadmium chloride (CdCl 2 ) exposure-induced ATF4 expression in HK-2 human renal proximal tubular cells. ATF4 knockdown by siRNA enhanced CdCl 2 -induced cellular damage, indicating a cytoprotective function of ATF4. Treatment with LY294002, a PI3K inhibitor, suppressed CdCl 2 -induced ATF4 expression and Akt phosphorylation at Thr308 with little effect on phosphorylation of eukaryotic translation initiation factor 2 subunit α at Ser51. Activation of PI3K signaling with epidermal growth factor treatment enhanced CdCl 2 -induced Akt phosphorylation and ATF4 expression. Suppression of CdCl 2 -induced ATF4 expression by LY294002 treatment was markedly blocked by cycloheximide, a translation inhibitor, but not by MG-132, a proteasome inhibitor, or actinomycin D, a transcription inhibitor. CdCl 2 exposure also induced phosphorylation of mammalian target of rapamycin (mTOR) at Ser2448, glycogen synthase kinase-3α (GSK-3α) at Ser21, GSK-3β at Ser9, and 90 kDa ribosomal S6 kinase 2 (RSK2) at Ser227 in HK-2 cells. Treatment with rapamycin, an mTOR inhibitor, MK2206, an Akt inhibitor, and BI-D1870, a RSK inhibitor, partially suppressed CdCl 2 -induced ATF4 expression. Conversely, SB216763, a GSK-3 inhibitor, markedly inhibited the potency of LY294002 to suppress CdCl 2 -induced ATF4 expression. These results suggest that PI3K signaling diversely regulates the expression of ATF4 in a translation-dependent manner via downstream molecules, including mTOR, GSK-3α/β, and RSK2, and plays a role in protecting HK-2 cells from cadmium-induced damage.
ISSN:0340-5761
1432-0738
DOI:10.1007/s00204-013-1129-y