Weak KAM Theory on the Wasserstein Torus with Multidimensional Underlying Space

The study of asymptotic behavior of minimizing trajectories on the Wasserstein space P(Td) has so far been limited to the case d = 1 as all prior studies heavily relied on the isometric identification of P(T) with a subset of the Hilbert space L2(0,1). There is no known analogue isometric identifica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications on pure and applied mathematics 2014-03, Vol.67 (3), p.408-463
Hauptverfasser: Gangbo, Wilfrid, Tudorascu, Adrian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The study of asymptotic behavior of minimizing trajectories on the Wasserstein space P(Td) has so far been limited to the case d = 1 as all prior studies heavily relied on the isometric identification of P(T) with a subset of the Hilbert space L2(0,1). There is no known analogue isometric identification when d > 1. In this article we propose a new approach, intrinsic to the Wasserstein space, which allows us to prove a weak KAM theorem on P(Td), the space of probability measures on the torus, for any d ≥ 1. This space is analyzed in detail, facilitating the study of the asymptotic behavior/invariant measures associated with minimizing trajectories of a class of Lagrangians of practical importance. © 2014 Wiley Periodicals, Inc.
ISSN:0010-3640
1097-0312
DOI:10.1002/cpa.21492