Additive noise quenches delay-induced oscillations

Noise has significant impact on nonlinear phenomena. Here we demonstrate that, in opposition to previous assumptions, additive noise interferes with the linear stability of scalar nonlinear systems when these are subject to time delay. We show this by performing a recently designed time-dependent de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Europhysics letters 2013-06, Vol.102 (6), p.60003
Hauptverfasser: Lefebvre, Jérémie, Hutt, Axel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Noise has significant impact on nonlinear phenomena. Here we demonstrate that, in opposition to previous assumptions, additive noise interferes with the linear stability of scalar nonlinear systems when these are subject to time delay. We show this by performing a recently designed time-dependent delayed center manifold (DCM) reduction around a Hopf bifurcation in a model of nonlinear negative feedback. Using this, we show that noise intensity must be considered as a bifurcation parameter and thus shifts the threshold at which delay-induced rhythmic solutions emerge.
ISSN:0295-5075
1286-4854
DOI:10.1209/0295-5075/102/60003