Structure and Properties of Wear-Resistant Spark-Deposited Coatings Produced with a Titanium Carbide Alloy Anode

The paper examines the phase and structure formation during hot pressing of titanium carbide electrode materials as well as the structurization and properties of spark-deposited coatings on steel substrates. The influence of the operating current used for erosion processing on the phase composition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Powder metallurgy and metal ceramics 2013-09, Vol.52 (5-6), p.306-313
Hauptverfasser: Tkachenko, Yu. G., Yurchenko, D. Z., Britun, V. F., Isaeva, L. P., Varchenko, V. T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper examines the phase and structure formation during hot pressing of titanium carbide electrode materials as well as the structurization and properties of spark-deposited coatings on steel substrates. The influence of the operating current used for erosion processing on the phase composition and hardness of the coatings is established. It is shown that the electrode materials with a certain composition and structure enable the electrospark deposition of 100 μm-thick coatings with hardness to 14 GPa. The mass of the material deposited on a steel substrate is three times higher than that formed using standard titanium carbide alloy TN20. The wear resistance of the coatings in abrasive and dry sliding friction is high, hence they may be recommended for protection of steel parts for severe wear applications.
ISSN:1068-1302
1573-9066
DOI:10.1007/s11106-013-9527-5