On the $\mathcal{R}$-Sectoriality and the Initial Boundary Value Problem for the Viscous Compressible Fluid Flow

In this paper, we prove the $\mathcal{R}$-sectoriality of the resolvent problem for the boundary value problem of the Stokes operator for the compressible viscous fluids in a general domain, which implies the generation of analytic semigroup and the maximal Lp-Lq regularity for the initial boundary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Funkcialaj Ekvacioj 2013, Vol.56(3), pp.441-505
Hauptverfasser: Enomoto, Yuko, Shibata, Yoshihiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we prove the $\mathcal{R}$-sectoriality of the resolvent problem for the boundary value problem of the Stokes operator for the compressible viscous fluids in a general domain, which implies the generation of analytic semigroup and the maximal Lp-Lq regularity for the initial boundary value problem of the Stokes operator. Combining our linear theory with fixed point arguments in the Lagrangian coordinates, we have a local in time unique existence theorem in a general domain and a global in time unique existence theorem for some initial data close to a constant state in a bounded domain for the initial boundary value problem of the Navier-Stokes equations describing the motion of compressible viscous fluids. All the results obtained in this paper were announced in Enomoto-Shibata [12].
ISSN:0532-8721
DOI:10.1619/fesi.56.441