On the $\mathcal{R}$-Sectoriality and the Initial Boundary Value Problem for the Viscous Compressible Fluid Flow
In this paper, we prove the $\mathcal{R}$-sectoriality of the resolvent problem for the boundary value problem of the Stokes operator for the compressible viscous fluids in a general domain, which implies the generation of analytic semigroup and the maximal Lp-Lq regularity for the initial boundary...
Gespeichert in:
Veröffentlicht in: | Funkcialaj Ekvacioj 2013, Vol.56(3), pp.441-505 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we prove the $\mathcal{R}$-sectoriality of the resolvent problem for the boundary value problem of the Stokes operator for the compressible viscous fluids in a general domain, which implies the generation of analytic semigroup and the maximal Lp-Lq regularity for the initial boundary value problem of the Stokes operator. Combining our linear theory with fixed point arguments in the Lagrangian coordinates, we have a local in time unique existence theorem in a general domain and a global in time unique existence theorem for some initial data close to a constant state in a bounded domain for the initial boundary value problem of the Navier-Stokes equations describing the motion of compressible viscous fluids. All the results obtained in this paper were announced in Enomoto-Shibata [12]. |
---|---|
ISSN: | 0532-8721 |
DOI: | 10.1619/fesi.56.441 |