Enzymatic Production of [gamma]-Aminobutyric Acid in Soybeans Using High Hydrostatic Pressure and Precursor Feeding

The effects were investigated of the glutamic acid (Glu) substrate concentration on the generation and kinetics of γ-aminobutyric acid (GABA) in soybeans treated under high hydrostatic pressure (HHP; 200 MPa for 10 min at 25 °C). The conversion of Glu to GABA decreased with increasing initial Glu co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioscience, biotechnology, and biochemistry biotechnology, and biochemistry, 2013-04, Vol.77 (4), p.706
Hauptverfasser: UENO, Shigeaki, KATAYAMA, Takumi, WATANABE, Takae, NAKAJIMA, Kanako, HAYASHI, Mayumi, SHIGEMATSU, Toru, FUJII, Tomoyuki
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effects were investigated of the glutamic acid (Glu) substrate concentration on the generation and kinetics of γ-aminobutyric acid (GABA) in soybeans treated under high hydrostatic pressure (HHP; 200 MPa for 10 min at 25 °C). The conversion of Glu to GABA decreased with increasing initial Glu concentration in the soybeans. The crude glutamate decarboxylase (GAD) obtained from the HHP-treated soybeans showed substrate inhibition. The GABA production rate in the HHP-treated soybeans fitted the following substrate inhibition kinetic equation: v0=(VmaxS0)/(Km+S0+(S0)2/Ki). The Km value for the HHP-treated soybeans was significantly higher than that of the untreated soybeans. The Km values in this study show the affinity between Glu and GAD, and indicate that the HHP-treated soybeans had lower affinity between Glu and GAD than the untreated soybeans. GAD extracted from the HHP-treated soybeans showed a similar value to that in the HHP-treated soybeans. The intact biochemical system was so damaged in the HHP-treated soybeans that it showed substrate inhibition kinetics similar to that of the extracted GAD. The combination of HHP and precursor feeding proved to be a novel tool that can be used to increase the concentration of a target component.
ISSN:0916-8451
1347-6947