Transmission Rate Control for Molecular Communication among Biological Nanomachines

In this paper, we discuss issues concerned with transmission rate control in molecular communication, an emerging communication paradigm for bio-nanomachines in an aqueous environment. In molecular communication, a group of bio-nanomachines acting as senders transmit molecules, the molecules propaga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal on selected areas in communications 2013-12, Vol.31 (12), p.835-846
Hauptverfasser: Nakano, Tadashi, Okaie, Yutaka, Vasilakos, Athanasios V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we discuss issues concerned with transmission rate control in molecular communication, an emerging communication paradigm for bio-nanomachines in an aqueous environment. In molecular communication, a group of bio-nanomachines acting as senders transmit molecules, the molecules propagate in the environment, and another group of bio-nanomachines acting as receivers chemically react to the molecules propagating in the environment. In the model of molecular communication considered in this paper, senders may transmit molecules at a high rate to accelerate the receiver reactions or to increase the throughput. However, if the senders transmit molecules faster than the receivers react, the excess molecules remain in the environment and eventually degrade or diffuse away, which results in loss of molecules or degradation in efficiency. Such a potential issue associated with throughput and efficiency is in this paper discussed as an optimization problem. A mathematical expression for an upper-bound on the throughput and efficiency is first derived to provide an insight into the impact of model parameters. The optimal transmission rates that maximize the throughput and efficiency are then numerically calculated and presented, and throughput and efficiency are shown to be in trade-off relationships in a wide range of transmission rates. Further, two classes of feedback-based transmission rate control schemes are designed for autonomous bio-nanomachines to dynamically control their transmission rates, respectively based on negative and positive feedback from the receivers. The numerical evaluation of the two transmission rate control schemes is then shown to provide useful guidelines for application developers to satisfy their design goals.
ISSN:0733-8716
1558-0008
DOI:10.1109/JSAC.2013.SUP2.12130016