Fractional Spectral Collocation Method
We develop an exponentially accurate fractional spectral collocation method for solving steady-state and time-dependent fractional PDEs (FPDEs). We first introduce a new family of interpolants, called fractional Lagrange interpolants, which satisfy the Kronecker delta property at collocation points....
Gespeichert in:
Veröffentlicht in: | SIAM journal on scientific computing 2014-01, Vol.36 (1), p.A40-A62 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We develop an exponentially accurate fractional spectral collocation method for solving steady-state and time-dependent fractional PDEs (FPDEs). We first introduce a new family of interpolants, called fractional Lagrange interpolants, which satisfy the Kronecker delta property at collocation points. We perform such a construction following a spectral theory recently developed in [M. Zayernouri and G. E. Karniadakis, J. Comput. Phys., 47 (2013), pp. 2108--2131] for fractional Sturm--Liouville eigenproblems. Subsequently, we obtain the corresponding fractional differentiation matrices, and we solve a number of linear FODEs in addition to linear and nonlinear FPDEs to investigate the numerical performance of the fractional collocation method. We first examine space-fractional advection-diffusion problem and generalized space-fractional multiterm FODEs. Next, we solve FPDEs, including the time- and space-fractional advection-diffusion equation, time- and space-fractional multiterm FPDEs, and finally the space-fractional Burgers equation. Our numerical results confirm the exponential convergence of the fractional collocation method. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 1064-8275 1095-7197 |
DOI: | 10.1137/130933216 |