Effects of Heat-Treatment Temperature on the Microstructure, Electrical and Dielectric Properties of M-Type Hexaferrites
M-type hexaferrite BaCr x Ga x Fe 12−2 x O 19 ( x = 0.2) powders have been synthesized by use of a sol–gel autocombustion method. The powder samples were pressed into 12-mm-diameter pellets by cold isostatic pressing at 2000 bar then heat treated at 700°C, 800°C, 900°C, and 1000°C. X-ray diffractio...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2014-02, Vol.43 (2), p.512-521 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | M-type hexaferrite BaCr
x
Ga
x
Fe
12−2
x
O
19
(
x
= 0.2) powders have been synthesized by use of a sol–gel autocombustion method. The powder samples were pressed into 12-mm-diameter pellets by cold isostatic pressing at 2000 bar then heat treated at 700°C, 800°C, 900°C, and 1000°C. X-ray diffraction patterns of the powder sample heat treated at 1000°C confirmed formation of the pure M-type hexaferrite phase. The electrical resistivity at room temperature was significantly enhanced by increasing the temperature of heat treatment and approached 5.84 × 10
9
Ω cm for the sample heat treated at 1000°C. Dielectric constant and dielectric loss tangent decreased whereas conductivity increased with increasing applied field frequency in the range 1 MHz–3 GHz. The dielectric properties and ac conductivity were explained on the basis of space charge polarization in accordance with the Maxwell–Wagner two-layer model and Koop’s phenomenological theory. The single-phase synthesized materials may be useful for high-frequency applications, for example reduction of eddy current losses and radar absorbing waves. |
---|---|
ISSN: | 0361-5235 1543-186X |
DOI: | 10.1007/s11664-013-2900-9 |