Improving the Selectivity toward Three-Component Biginelli versus Hantzsch Reactions by Controlling the Catalyst Hydrophobic/Hydrophilic Surface Balance

The catalytic activities and selectivities of two kinds of mesoporous solid acids SBA‐15‐PrSO3H 1, SBA‐15‐Ph‐PrSO3H 2, and a periodic mesoporous organosilica (PMO) based solid acid Et‐PMO‐Me‐PrSO3H 3 that comprise different physicochemical surface properties were compared in an environmentally benig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemCatChem 2014-01, Vol.6 (1), p.212-219
Hauptverfasser: Karimi, Babak, Mobaraki, Akbar, Mirzaei, Hamid M., Zareyee, Daryoush, Vali, Hojatollah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The catalytic activities and selectivities of two kinds of mesoporous solid acids SBA‐15‐PrSO3H 1, SBA‐15‐Ph‐PrSO3H 2, and a periodic mesoporous organosilica (PMO) based solid acid Et‐PMO‐Me‐PrSO3H 3 that comprise different physicochemical surface properties were compared in an environmentally benign one‐pot, three‐component Biginelli reaction of aldehydes, β‐ketoesters and urea or thiourea under solvent‐free conditions. Among these mesoporous solid acid catalysts, 3, which has a hydrophobic/hydrophobic balance in the nanospaces (mesochannels) in which the active sites are located, is found to be a significantly more selective catalytic system in the Biginelli reaction; it produces the corresponding 3,4‐dihydropyrimidin‐2‐one\thione (DHPM) 5 derivatives in good to excellent yields and excellent selectivities. Notably, in the case of conducting the three‐component coupling reaction of benzaldehyde, metylacetoacetate and urea in the presence of 1 result in the generation of a mixture of Hantzsch dihydropyridine 4 (≈37 %) and Biginelli dihydropyrimidinone 5 (≈49 %), whereas the same reaction with 2 (catalyst loading of 1 mol % as well) furnishes the corresponding aldolic product methyl‐2‐benzylidene‐3‐oxobutanoate 6 as the major product (≈80 %) with concomitant formation of small amounts of 5 (
ISSN:1867-3880
1867-3899
DOI:10.1002/cctc.201300739