Self-Assembly and (Hydro)gelation Triggered by Cooperative [pi]-[pi] and Unconventional CHX Hydrogen Bonding Interactions

Weak CHX hydrogen bonds are important stabilizing forces in crystal engineering and anion recognition in solution. In contrast, their quantitative influence on the stabilization of supramolecular polymers or gels has thus far remained unexplored. Herein, we report an oligophenyleneethynylene (OPE)-b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2014-01, Vol.53 (3), p.700
Hauptverfasser: Rest, Christina, Mayoral, María José, Fucke, Katharina, Schellheimer, Jennifer, Stepanenko, Vladimir, Fernandez, Gustavo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Weak CHX hydrogen bonds are important stabilizing forces in crystal engineering and anion recognition in solution. In contrast, their quantitative influence on the stabilization of supramolecular polymers or gels has thus far remained unexplored. Herein, we report an oligophenyleneethynylene (OPE)-based amphiphilic PtII complex that forms supramolecular polymeric structures in aqueous and polar media driven by π-π and different weak C-HX (X=Cl, O) interactions involving chlorine atoms attached to the PtII centers as well as oxygen atoms and polarized methylene groups belonging to the peripheral glycol chains. A collection of experimental techniques (UV/Vis, 1D and 2D NMR, DLS, AFM, SEM, and X-Ray diffraction) demonstrate that the interplay between different weak noncovalent interactions leads to the cooperative formation of self-assembled structures of high aspect ratio and gels in which the molecular arrangement is maintained in the crystalline state.
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.201307806