Remarks on Hamiltonian structures in G^sub 2^-geometry
In this article, we treat G ^sub 2^-geometry as a special case of multisymplectic geometry and make a number of remarks regarding Hamiltonian multivector fields and Hamiltonian differential forms on manifolds with an integrable G ^sub 2^-structure; in particular, we discuss existence and make a numb...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2013-12, Vol.54 (12), p.1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we treat G ^sub 2^-geometry as a special case of multisymplectic geometry and make a number of remarks regarding Hamiltonian multivector fields and Hamiltonian differential forms on manifolds with an integrable G ^sub 2^-structure; in particular, we discuss existence and make a number of identifications of the spaces of Hamiltonian structures associated to the two multisymplectic structures associated to an integrable G ^sub 2^-structure. Along the way, we prove some results in multisymplectic geometry that are generalizations of results from symplectic geometry. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0022-2488 1089-7658 |