On Periodic Mappings Arising from the QRT System

An eight-parameter family of two-dimensional piecewise linear mappings is discussed. Since the dynamical system is obtained from the QRT system through the ultradiscretization, the dynamical system is called the ultradiscrete QRT system. The ultradiscrete QRT system is considered to be integrable be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and Applied Mechanics Japan 2003, Vol.52, pp.229-237
1. Verfasser: NOBE, Atsushi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An eight-parameter family of two-dimensional piecewise linear mappings is discussed. Since the dynamical system is obtained from the QRT system through the ultradiscretization, the dynamical system is called the ultradiscrete QRT system. The ultradiscrete QRT system is considered to be integrable because it has an eight-parameter family of invariant curves which fills the plane. It is shown that, for particular parameters, the dynamical system can be regarded as a dynamical system on a fan associated with the conserved quantity. It is also shown that such a dynamical system has periodic solutions for any initial value. Therefore we call such a dynamical system the ultradiscrete periodic QRT system. From the ultradiscrete periodic QRT system, the periodic QRT system is obtained in terms of the inverse ultradiscretization.
ISSN:1348-0693
1349-4244
DOI:10.11345/nctam.52.229